MSNA - Research Terms of Reference

Multi Cluster Needs Assessment (MCNA) X IRQ2206

Iraq

May 2022

1. Executive Summary

Country of	Irac								
intervention	liac								
Type of Emergency		Natural disaster	Х	Con	ıflict		Other (specify)		
Type of Crisis		Sudden onset			w onset	X	(, , ,		
Mandating Body/		essment and Information V							
Agency	(IC		voriding	0100	<i>ip</i> (/ iiivi	, iu	otor coordination croup		
IMPACT Project Code	,	2206							
Overall Research	11 13	<u> </u>							
Timeframe (from	01/0	04/2022 to 30/11/2022							
research design to final	0 17	3 17 E G E E E E E E E E E E E E E E E E E							
outputs / M&E)									
Research Timeframe	1. F	Pilot/ training: 29/05/2022			7. MSNI DAP sent	fo	r validation.: 30/07/2022		
Add planned deadlines	2. S	Start collect data: 01/06/20	22		8. MSNI analysis s	en	t for validation:		
					15/09/2022				
	3. E	Data collected: 31/07/2022			9. Bulletin sent for	va	lidation: 15/10/2022		
	4. C	Oata analysed: 20/08/2022			10. Bulletin publish	nec	d: 30/10/2022		
	5. E	5. Data sent for validation: Preliminary (to		11. Final presentat	ior	n: 30/09/2022			
	me	et HPC milestones):1 08/09	/2022						
	6. F	Preliminary presentation: 20	/09/202	2	12. Other specify:				
					 Rolling ba 	sis	s for factsheets,		
					presentat	ior	ns and dashboard		
					through A	υg	just-November		
					• 10/11/202	22	for final report		
Humanitarian	Mile	estone			Deadline				
milestones		Donor plan/strategy			Late August 2022 -	- 1	November 2022		
Specify what will the assessment inform and	Х	Inter-cluster plan/strategy	1		Throughout HNO p November 2022)	oro	cess (September-		
when	Χ	Cluster plan/strategy							
e.g. The shelter cluster will use this data to draft		□ NGO platform plan/strategy					1 1		
its Revised Flash Appeal;	X	Other (Specify):			applicable decision) Sectoral f	e (s : 1 finc	ral Analysis Support, if subject to HCT 0/08/2022 dings through excel presentations for priority		

¹ Final outputs include sectoral presentations, overall findings presentation, dashboard and factsheets with key findings per population group.

Audience Type &	Audience type X Strategic	indicators used in the HNO; support preparation of inter-sectoral PiN and severity calculations, by district and population group • HNO Joint Analysis Workshop(s): Between 10/08/2022 and 20/08/2022 As above, sectoral findings through excel tables and presentations for priority indicators used in the HNO; support preparation of inter-sectoral PiN and severity calculations, by district and population group Dissemination X General Product Mailing (e.g. mail to NGO
Dissemination Specify		consortium; HCT participants; Donors)
who will the assessment	X Programmatic	· · · ·
inform and how you will disseminate to inform the audience	□ Operational □ [Other, Specify]	X Cluster Mailing (Education, Shelter and WASH) and presentation of findings at next cluster meeting
addioned		X Presentation of findings (e.g. at HCT meeting; Cluster meeting)
		X Website Dissemination (Relief Web & REACH Resource Centre)
		X Iraq Assessment Registry
Detailed dissemination plan required	X Yes	□ No
General Objective	Inform the 2023 Humanitarian Needs Ove	rview (HNO) and support evidence-based
	(HRP) and if so, b) to inform the HRP proc humanitarian actors, through the provision and priorities for crisis-affected population provide humanitarian and development ac multi-sectoral needs and vulnerabilities of	of updated information on multi-sectoral needs is across Iraq OR c) in absence of an HRP, etors with a comprehensive overview of the (formerly) displaced populations.
Specific Objective(s)	·	ase about the prevalence and type of pre-existing
	vulnerabilities among conflict-affected	• •
	•	ase about the sectoral and cross-sectoral living and reported priorities among conflict-affected
	• •	base about the negative coping strategies
	households employ to cope with unme	et needs and/or pre-existing vulnerabilities ³
	Provide a comprehensive evidence banneeds among conflict-affected popula	ase on the variance and severity of humanitarian tions
Research Questions	Pre-existing vulnerabilities	
	a. What proportion of households ha	ave pre-existing vulnerabilities?
	b. How do the levels of pre-existing	
	i. Assessed districts	

² Pre-existing vulnerabilities are here understood as cross-cutting conditions that increase household's exposure to a crisis and/or reduce their coping capacity in response to a crisis.

³ Negative household coping strategies may refer to unsustainable strategies employed by households in order to meet their basic needs, including

taking on debt or relying on humanitarian aid.

	ii. Population groups (IDPs 2. Humanitarian conditions (living standa	s out of camps, IDPs in camps, returnees) ards and well-being):			
	 a. What is the level of living standar sectors: Food Security, Shelter & 	rd gaps for Iraqi households across the following NFI, WASH, Education, Health, Livelihoods and ection, Durable Solutions and Mine Action)?			
	i. Assessed districts?ii. Population groups (IDP:iii. Pre-existing vulnerabilit	s out of camps, IDPs in camps, returnees)?			
	c. What are household's reported priority	• •			
	Coping mechanisms				
	 a. To what level do IDP and returnee households report using coping mechanism to cope with needs and gaps in the following sectors: Food Security, Livelihood Shelter & NFI, WASH, Education, Health and Protection (incl. GBV, Chi Protection, Durable Solutions and Mine Action)? b. How do those coping mechanisms differ by: 				
	i. Assessed districts?				
	ii. Population groups (IDPs out of camps, IDPs in camps, returnees)?iii. Pre-existing vulnerability profile?				
	4. The severity of humanitarian needs:				
	a. What is the overall severity of humanitarian needs?				
	b. What proportion of households fa				
	c. How does the severity of humani	tarian needs differ by:			
	iv. Assessed districts?				
	v. Population groups (IDP	s out of camps, IDPs in camps, returnees, host			
	community)?				
	Pre-existing vulnerability profile?				
Geographic Coverage	Nationwide, across 65 districts and 27 car present. ⁴	mps in which the targeted population groups are			
Secondary data	•	h as IOM's DTM IDP Returnee Master Lists,			
sources		d IOM's Integrated Location Assessment Round			
	<u>V</u> ;				
	· · · · · · · · · · · · · · · · · · ·	se strategies, including the 2022 HNO/HRP, and			
	· · · · · · · · · · · · · · · · · · ·	NA IX and Intentions in Formal Camps,			
Population(s)	X IDPs in camp	□ IDPs in informal sites			
Select all that apply	X IDPs in host communities	X IDPs out of camp ⁵			
	□ Refugees in camp	□ Refugees in informal sites			
	□ Refugees in host communities	□ Refugees [Other, Specify]			
	X Host communities	X Returnees (i.e. households displaced since January 2014 who return to their sub-district of origin, irrespective of whether they have returned to their			
Structured		former residence or to another shelter type)			

 $^{^4}$ All districts with a minimum of 200 IDP and/or returnee households. 5 IDPs out of camps includes IDPs living in informal sites as well as IDPs living in host communities

10 11 11 3 5 5 5 5 5										
(Quantitative) Select all that apply										
Data collection level:		Individual			Χ	Household				
		Settlement			□ Other (specify): _					
If Probability Sampling	San	ipling method:			Selection:					
	X R	Random sampling (IDPs in-camp)			Probability Proportional to Size (PPS):					
		Cluster sampling (IDPs out-of-cam	ıp,		x Yes □ No					
		rnees, host community) sampling is stratifed:			Selection of PSUs with replacement?					
		, -			Χ	Yes □ No				
		es □ No			Αi	med precision a	t st	ratification level:		
	if ye	s what are the stratifications: Geographic: district, camp	(for i	n-		% level of confide +/- % margin of e				
		camp pop.) - Population groups: IDP in-c	amn			iffer: 5 %		(
		IDP out-of-camp, returnee,				ital sample size: (Tar	net #)· 12 441		
		community households				esampling:	. u.	90(11). 12,111		
	\ \ / //	et ie the Deire en een lie ee ee't (D	21.I\-			. •	rve	list of PSUs / households		
	clus	at is the Primary sampling unit (Pt ter	50):		in	case of inacessib	le a	rea? Yes x No (can		
		uster sampling, what is the mininu	sampling, what is the mininum				be generated on demand from field staff)			
		ter size? 1km²			Data collection method:					
		ampling frame:				x Face to face				
		you have the population number at PSU				Remote data coll	ect	ion		
		If for all population groups?		e						
		es No (estimates for host com	muni	ties						
	Tron	n worldpop dataset)								
Questionnaire design	Mar	ndatory indicators			XLSform for mandatory indicators					
	All t	he madatory indicators from the 2	022		The kobo questionnaire provided for the					
	MSI	NA indicator bank, have been incl	udec	ı	ma	andatory indicator	s w	as used without alteration:		
	with	out alteration:				Yes x No (agree	me	nt with HCT/clusters to		
	□ Y	'es x No (please see annex 4)			ad	here to 2021 indi	cato	ors, questions, and		
					ph	rasing)				
Data management	Х	IMPACT				UNHCR				
platform(s)										
	Χ	Humanitarian Data Exchang			٠,					
Expected ouput	Х	MSNA Bulletin#: 1	Х	Repo	ort :	#: 1		Profile #:		
type(s)	Х	Presentation (Preliminary	X	Droc	sentation (Final) X Factsheet #: 4 bmap #: X Map #: 3		Y	Eastshoot #: 4		
	^	findings) #: 1	^	#: 1			^	Facisiieei #. 4		
	Χ	Interactive dashboard #: 1		Web			Map #: 3			
					1 1 .					
		[Other, Specify] #:								
Data publication plan		Final (anonymised) dataset						ource center		
Data publication plan								ource center		
Data publication plan		Final (anonymised) dataset	oubli	c, thro	oug	h HDX connect		ource center		

Visibility Specify which logos should be on outputs

REACH [By default unless specified otherwise]

Donor: BHA and ECHO

Coordination Framework: Assessment and Information Management Working Group

Partners: Logos of all participating clusters and partners (list TBD)

2. Rationale

2.1 Background

In 2022, more than four years after the end of military operations against the group known as the Islamic State of Iraq and the Levant (ISIL), the humanitarian context in Iraq is paradoxical and evolving.⁶ The dual shocks experienced in 2020 from the COVID-19 pandemic and plummeting oil prices have begun to subside, and the lifting of most COVID-19 preventative measures and the increase in oil prices have lessened the nonetheless persistent strain on Iraq's economy.⁷ However, although several positive developments are gaining strength, the humanitarian situation of currently and formerly displaced Iraqis has not seen significant change, with humanitarian needs continuing to be driven by the effects of conflict and displacement. According to the 2022 HNO, Iraq has 2.5 million people in need of humanitarian assistance, including 1.2 million people who have not yet found a sustainable path back home after the conflict with ISIL, and remain internally displaced.⁸

Conflict-affected populations in Iraq continue to face multi-sectoral needs, aggravated by certain household vulnerabilities. According to the 2021 MCNA, access to basic services reportedly stagnated or even deteriorated in some districts from 2020 to 2021.9 For example, the proportion of households who reported lacking access to an improved water source increased amongst all population groups between 2020 and 2021.10 This fragmented access to basic services reported during the MCNA IX is particularly relevant in light of this year's MCNA X, as it may lead to a deterioration of additional acute and long-term household needs. IDP and returnee households were also exposed to cross-cutting vulnerabilities; for example, female-headed households were more likely to report problems with livelihoods, whereas increased health needs were more commonly reported by households with at least one member with a disability.11 Regarding access to education, female-headed households, households with at least one member with a disability, and households living in critical shelter and informal sites reported reduced access to education in substantial proportions.12 Additionally, with MCNA IX data reflecting a decreased intention among IDP households to return to their area of origin (AoO), there may be a growing degree of uncertainty about how conditions in their AoO or area of displacement will develop.13

Vulnerabilities remain the highest in the conflict-affected governorates of north and central Iraq, with nearly all of those still displaced originating from just 25 districts in formerly ISIL-affected areas. ¹⁴ Half originate from just four districts: Al-Mosul, Sinjar, Al-Baaj and Telafar districts in Ninewa Governorate. These conflict-affected populations are highly exposed to shocks, and their capacity to cope with shocks is reportedly crumbling, which suggests they are unable to cope with current conditions and are likely ill-prepared to cope with additional shocks. ¹⁵

For returnees, certain barriers to a dignified life still remain. According to the 2022 Humanitarian Response Plan (HRP), more than half a million returnees remain in acute need of humanitarian assistance, and many returnees find that their areas

⁶ Humanitarian Needs Overview 2022.

⁷ OCHA Iraq.

⁸ Humanitarian Response Plan 2022.

⁹ Please note that statistical significance testing was conducted for comparisons of the MCNA results across time discussed in this brief. Comparisons were found to be significant.

¹⁰ REACH Iraq MCNA IX (2021) Brief.

¹¹ Ibid.

¹² Ibid.

¹³ Ibid.

¹⁴ Humanitarian Response Plan 2022.

¹⁵ Ibid.

of origin lack government-supported basic infrastructure, services, security, and livelihood opportunities. ¹⁶ Often, returnees continue to struggle with limited access to services and livelihoods, amid high levels of social, political and security tensions. Few voluntary returns are expected throughout the first half of 2022.

While the national landscape is evolving, "transitioning IDPs towards durable solutions remains at the top of the United Nations' priorities in Iraq" this year. 17 This is expected to translate in overcoming significant barriers to return, rebuilding the country and enhancing local economy. Priorities consist of addressing the remaining challenges that require long-term structural solutions beyond the humanitarian response, and implementing durable solutions for those in protracted displacement. Nonetheless, the continued existence of severe humanitarian needs, continued political instability and localised open conflict, and decelerating rehabilitation efforts, must be taken into account in the context of preparations to scale down the humanitarian response.

2.2 Intended impact

This complex multi-sectoral intervention environment in Iraq requires a comprehensive understanding of humanitarian conditions, and the development thereof. Hence there is a need for regular and reliable inter-sectoral data to be gathered on in-camp IDPs, out-of-camp IDPs and returnees as conflict-affected population groups in order to support humanitarian and (increasingly) development actors in Iraq in developing evidence-based strategies that address the gaps for the most affected people. The MCNA seeks to provide this for the tenth year, on the basis of the strong collaboration with OCHA and the Assessment and Information Working Group (AIM WG) since 2017. In expansion of the MCNA IX's (2021) coverage of a pilot of host community households in four districts, the MCNA X (2022) may include host community samples to gage impact of previous years' prgramming, and for the purpose of furthering understanding of programmatic gaps for Durable Solutions actors, pending funding. ¹⁸ Particularly in the context of the rapidly evolving implementation and coordination landscape in Iraq, and a potential phase-out of many sectoral coordinating bodies, it will be critical to have a comprehensive understanding of the remaining pockets of humanitarian needs to inform immediate prioritisation, as well as of households at risk of rapid backsliding in case of future shocks (e.g., droughts, political instability).

Similar to previous rounds of MCNA assessments, this year's MCNA X is intended to provide an overall understanding of household vulnerabilities, household's main needs and the severity of these needs, both within each sector and from a cross-sectoral perspective. Given the increasing importance of durable solutions in Iraq, special attention will also be granted to identify indicators that will serve the broader humanitarian/development nexus for ongoing or planned interventions. The findings of this nationwide assessment will notably directly feed into decisions on the need for a 2023 Humanitarian Planning Cycle (HPC) for Iraq, as well as into the PiN and Severity calculations for the 2023 Humanitarian Needs Overview (HNO).

3. Methodology

3.1 Methodology overview

The MCNA X seeks to cover all geographical areas and population groups of interest to the humanitarian community in Iraq through in-person data collection by REACH enumerators, building on a two-stage stratified cluster sampling approach that allows findings to be statistically representative with a level of confidence of 90% and a margin of error of 10%.

More specifically, MCNA X will aim at:

a) collecting as much in-person data as possible;

¹⁶ Ibid.

¹⁷ Ihid

¹⁸ Funding support from the Durable Solutions Technical Working Group (DSTWG) for the host community segment at the time of writing (May 2022) is yet to be confirmed.

- b) relying on in-person data collection by partners mainly in areas that are inaccessible for REACH; 19
- c) relying on phone numbers only in districts in which neither REACH nor partner enumerators have access, in the unlikely, but possible scenario that the security context or partner availability changes.

Data collection for the MCNA X is scheduled to begin on 01 June 2022 and is projected to finish on 31 July 2022. Depending on the data collection method that will be employed in each of the districts, the total number of in-person surveys collected through this year's MCNA X will be approximately 12,500. All data (from both REACH and partner enumerators) will be cleaned centrally using one cleaning script. Cleaning issues will be addressed preferably within one day. A saturation tracker will track MCNA data collection progress, to be shared with field teams regularly.

Once all data has been collected and cleaned, preliminary and intersectoral analysis scripts will have been created and tested for creating weighted means per indicator, as well as intersectoral scores per population groups and district according to an updated scoring model (to be determined by HCT). Both the preliminary and intersectoral analyses, once validated internally, at HQ-level, and by clusters, will be used for the creation of maps, factsheets, presentations, a dashboard, and other outputs, for general or cluster-specific dissemination.

3.2 Population of interest

In line with previous MCNAs in Iraq, the MCNA X will continue to assess severity of needs among different crisis-affected population groups within Iraq, as defined by the Humanitarian Country Team (HCT), at the household level. The identification and sampling of households from relevant population groups will be guided by displacement-related factors that have led to increased vulnerabilities over the past seven years. This stratification by population group is required to ensure that the needs of different vulnerable groups are captured.

REACH will survey households from the following population groups nationwide (definitions below):

- Internally Displaced Persons²⁰:
 - In camp: 27 formal IDP camps and camp areas, as agreed upon with the Camp Coordination and Camp Management (CCCM) Cluster, samples to be seen in <u>Annex 2</u>
 - Out of camp: all districts where a minimum of 200 IDP households are present in out of camp settings, including those living in informal settlements. According to <u>DTM data</u> from March 2022, there were 59 districts across 17 governorates with a minimum of 200 IDP households.
- <u>Returnees</u>: all districts where a minimum of 200 returnee households are present. (According to <u>DTM data</u> from March 2022, there were 37 districts across 7 governorates with a minimum of 200 returnee households)
- Host communities: districts with more than 15,000 People in Need (PiN) of at least one population group in that
 district and with an average HNO Severity level 4 and 5 (out of 5) as per the 2022 HNO PiN and Severity
 calculations.

The selection of the population groups assessed through the MCNA X was done in consultation and agreement with the ICCG and has been endorsed by the Humanitarian Country Team (HCT).

Relevant definitions:

A household is a group of people who regularly share meals, income, and expenditures together. Members
must acknowledge the authority of one person as head of household and that person must actually live with

www.reach-initiative.org 7

1

¹⁹ Considering the value of joint data collection, exceptions can be made to allow partners to conduct in-person data collection in areas accessible to

²⁰ A separate assessment will be conducted within formal IDP camps. The household survey questionnaire has been harmonized to allow for comparison between these groups. Additional data on displacement will be captured to allow for disaggregation by newly or secondarily displaced households during the analysis phase.

- the rest of the household members. In polygamous households, each wife is treated as a distinct household when the wives live in different houses, cook separately and take decisions independently²¹.
- Households displaced from their sub-district between 2014-2017 but still living in Iraq are considered to be internally displaced, as per IOM DTM definitions.
- Households displaced since 2014 (using above definition) who have since returned to their sub-district are considered as returnees, as per IOM DTM definitions.
- Households who remained in the area of origin during and after the events of 2014 are considered to be host community households, as per the <u>Returns on Durable Solution (ReDS) definition</u>.

3.3 Secondary data review

Throughout the research cycle, the assessment team will monitor secondary data sources to inform the design and content of the questionnaires; inform the categorization of areas and target population groups, and ensure proper contextualization of findings for the final output production.

Key sources of secondary data include, but are not limited to:

- Population tracking information, such as <u>IOM's DTM IDP Returnee Master Lists</u>, <u>CCCM Cluster population figures</u>, and IOM's Integrated Location Assessment Round V;
- Nationwide assessments and response strategies, including the 2022 <u>HNO/HRP</u>, and recent REACH products such as MCNA IX, Intentions in Formal Camps VI, and Camp Profiles XIV;
- Recent localized area-based assessments to provide a deeper context in key areas;
- Additional assessments such as the Rapid Needs Assessments and other sector-specific gap analyses will serve
 as sources of triangulation and contextualization for the findings;
- Any other relevant and accurate information shared by partner organizations or clusters during data collection and analysis.

3.4 Primary Data Collection

3.4.1. Method

The preferred MCNA X data collection method is face-to-face household surveys, which will ideally be implemented in all districts. However, the design and implementation of data collection activities for the MCNA X will be contingent on the current operational context in Iraq with regards to security-related measures. In particular, considerations around movement restrictions and barriers in conducting home visits and face-to-face interviews will feed into the decision about which sampling and data collection methodology will be employed per district. At the time of writing, COVID-19 cases in Iraq are at a minimum compared to the preceding year, which, if continuing throughout the data collection phase, would allow full inperson coverage.²²

In case of a rapidly changing security or COVID-19 context, REACH has prepared three scenarios based on different operational contexts, determined by movement restrictions and safety concerns. **In-person data collection**, either conducted by REACH or its partner organisations, will be implemented as often as the context allows, following assessments on the situation. Partner organisations are responsible for undertaking their own evaluation to assess the feasibility of in-

www.reach-initiative.org 8

-

²¹ For comparability, the same definition is applied as in the MCNA IX.

²² In the context of the ongoing COVID-19 pandemic, and to align with the humanitarian principle of "do no harm", REACH has developed Standard Operating Procedures (SOPs) to provide field teams with guidance on how to undertake data collection in the field. These SOPs aim to protect target populations and staff while ensuring that key information on the humanitarian situation is collected. The procedures require staff to adhere to strict rules of hygiene, use of Personal Protective Equipment (PPE) – e.g. face masks, hand sanitizers – and social distancing before, during and after data collection.

person data collection.²³ Whenever in-person data collection cannot be conducted, either by REACH or its partners, enumerators will carry on **phone-based interviews**.

The three scenarios below outline the type of sampling methodology and collection method per operational context:²⁴
Table 1: Scenario per operating environment - 2022

Scenario Planning	Operational Context	Implications for MCNA Sampling Methodology	Implications for MCNA Data Collection Method
Scenario 1: Fully operational	There are no safety concerns or movement restrictions present in any of the districts included in the sampling frame.	As in previous years, a two-stage stratified cluster sampling approach will be employed in all districts included in the sampling frame. All findings will be statistically representative at the strata-level (population group and district) with a level of confidence of 90% and a margin of error of 10%.	As in previous years, primary data collection will take place through face-to-face interviews in all districts included in the sampling frame (by partners and/or REACH enumerators).
Scenario 2: Partly operational	Safety concerns and/or movement restrictions are only present in certain districts included in the sampling frame. Other districts are fully accessible and there are no safety concerns related to a face-to-face data collection.	For those districts where no safety concerns or movement restrictions are present, a two-stage stratified cluster sampling approach will be employed and findings will be representative for each population group with a level of confidence of 90% and a margin of error of 10%. For those districts where safety concerns and/or movement restrictions are present, a purposive non-randomized quota sampling approach will be employed, and findings will only be indicative.	Primary data collection will take place through face-to-face interviews in those districts where no safety concerns or movement restrictions are present. In all other districts, primary data collection will take place through remote phone-based interviews. Phone numbers will be provided by partner organisations (see Annex 3).
Scenario 3: Fully restrictive	Safety concerns and/or movement restrictions are present in all districts included in the sampling frame.	A purposive non-randomized quota sampling approach will be employed in all districts included in the sampling frame. Findings for all districts will only be indicative.	Primary data collection will take place through remote phone-based interviews in all districts included in the sampling frame. (see Annex 3).

Despite safety related concerns being unpredictable, it is likely that data for all districts will be collected through face-to-face interviews either by REACH or by partners. In the case that a district cannot be covered in-person, data would be collected through remote phone-based interviews. Within one district, however, one data collection method will be used (provided that there are no sudden health or security risks for field teams that force a switch to phone-based surveys).

www.reach-initiative.org 9

)3

²³ REACH can however play an advisory role and share contextual information that will feed into the decision-making process of the partner organisations.

Note, the scenario planning and flexibility in data collection strategy proved successful in 2021 and will be further built on for 2022 if need be, while allowing for additional support and contributions from partner organizations.

Overall, flexibility when collecting data will be crucial, both from REACH and partner organisations sides, as it may vary following the outcomes of situation monitoring. Flexibility will also be required for quickly adapting data collection plans should partner organisations have last-minute, unforeseen barriers to field data collection. To ensure effective communication and coordination between REACH and partner organisations, follow-up with focal points and enumerators will be organized on a regular basis. The field teams and assessment team will jointly develop three-week data collection plans, thereby reassessing access and risks at least at three formalized moments during the data collection period.²⁵

3.4.2 Sampling:

All MCNA X samples will be drawn though probability sampling. The sampling methodology applied to a given district is dependent on the data collection method that will be employed in that same district (face-to-face interviews or, in extenuating circumstances remote phone-based interviews). By default, we assume that all districts will be covered through face-to-face data collection.

Assuming case face-to-face interviews are possible in a given district, the sampling methodology will depend on the assessed population group. All sampling for face-to-face coverage can be found in annex 1.

IDPs residing out of camps, returnees, and host communities (if applicable)

A two-stage stratified cluster sampling approach (90% level of confidence and a 10% margin of error) will be employed in all accessible districts where each of the population groups are present. The PSU is the cluster (selected with PPS), and stratification takes place at population group per district. The minimum cluster size is 1km² and contains minimum 5 sampled households.

- IDPs out of camp: All districts with a minimum of 200 IDP households, as recorded in the IOM DTM database.²⁶
- Returnees: All districts with a minimum of 200 Returnee households, as recorded in the IOM DTM database.
- **Host community:** districts with more than 15,000 People in Need (PiN) of at least one population group in that district and with an average HNO Severity level 4 and 5 (out of 5), as per the 2022 HNO figures.

IDPs residing in camps: stratified sampling at 95% confidence level (CL)/10% Margin of Error (MoE) at camp level, in all camps with 100 households or more, based on household population figures provided by CCCM Cluster operational partners.²⁷ The PSU is the camp, for which population data is included in the IOM DTM dataset.

- Point-based sampling will be applied. A grid of points will be generated across the camp, from which points
 are randomly selected using GIS. Sampling maps will be provided to the teams, and the nearest household to
 each point is then interviewed.
 - Camp infrastructure areas will be removed from the sampling area, thereby sampling only from household residential areas. Satellite imagery will be ordered for new camps, and GPS tracks of key infrastructure/programme buildings will be taken by field teams.
 - o In the event that the household does not have an adult willing to participate in the survey, the nearest household (in a randomized direction) will be approached for the survey.

Two-stage stratified cluster sampling for out-of-camp IDPs, returnees and host communities (pending)

The GIS team will refine both sampling frames in advance of data collection to ensure that locations fall within geographic boundaries for districts and governorates from the Common Operational Datasets that were agreed by the humanitarian community in Iraq, and to remove any points that clearly fall in uninhabited areas (military bases, airports, etc.).

A cluster sample will be drawn for each population group in each district, with probability proportional to size (PPS) (based on recorded number in the relevant sampling frames). Clusters are 1km² in size. Each cluster will have a minimum target sample size of five households.

www.reach-initiative.org 10

.

²⁵ Next to the three-week data collection plans, daily monitoring and coordination with both REACH and partner field teams may result in adaptions throughout.

²⁶ Given the required sample size of approximately 95 households per target population group per district as well as previous assessments highlighting potential discrepancies in displacement tracking data, a minimum threshold is set to 200 households (sample estimate using 2-stage cluster sampling at a 90% confidence level and 10% margin of error; estimated design effect of 1.4). These exclusion criteria may introduce bias as households living in districts with a lesser density of households in their population group may not be selected.

²⁷ A full methodology note for the camp portion of the assessment can be found <u>here</u>.

The second stage for both sampling strategies consists of randomly selecting households at the location level:

- A set of random geo-points will be generated, and a map will be provided to enumerators through the maps.me app.
 The eligible household nearest to each point will be interviewed.
 - Areas where households would not be present will be removed from the map prior to the generation of random geo-points, including airports, military bases, known areas with explosive hazards, etc.
 - o In the event that the geo-point location falls on a multi-story building, a random number generator will be used to select the floor and/or apartment number.
 - A large buffer of geo-points will be drawn per location. In the event that the household does not have an adult willing to participate in the survey, the nearest household in the same target population group will be approached for the survey (if in the same city block or apartment building), within a radius of 500 meters. If no other eligible household is present at the same point, the enumerator will continue to the next randomly assigned geo-point.

3.4.3 Tool

Given similarity of indicators, the 2022 MCNA tool – pertaining to IDPs out-of-camp, returnees, and host communities – has been merged with the Iraq Camp Profiling 2022 tool (ToR forthcoming), and the new tool will serve all four population groups as relevant through relevancy/skip-logic/groupings in order to optimize data cleaning capacity. As the tool, and the MCNA X indicators more broadly, are agreed in-country to remain the same as the MCNA in 2021, the tool has also remained the same besides the merging of the Camp Profiling sections and minor updates, including certain HQ-mandated questions. To this effect, the tool does not incorporate

The following sectors will be covered in the questionnaire: Education, Water, Sanitation and Health (WASH), Food Security, Livelihoods, Shelter and Non-Food Items (NFIs), Protection, and more specifically, Child Protection, Mine Action, CCCM, and Gender-Based Violence. Cross-cutting themes and analysis will be conducted on themes such as Gender, Disability, Accountability to Affected Populations (AAP), Durable Solutions; as well as themes related to movement intentions. The tool will only be updated with IMPACT HQ additions, and will largely remain the same as the MCNA IX (2021) tool.

3.4.4 Data collection monitoring

Prior to the start of data collection, field coordinators and enumerators will be trained on the specificities of the MCNA tool, with an emphasis on what has changed since the MCNA X and lessons learned from it. In 2022, more specific training will be provided to partner organisations' enumerators (in-person if possible) who are not familiar with REACH methodology and to ensure that data collection is aligned nationwide. A specific component on the principles of Protection Against Sexual Exploitation and Abuse (PSEA) will also be added to the training programme as well as practical session on work-planning and operations. One week prior to the start of data collection, REACH will conduct a pilot. This will allow field coordinators and enumerators to test the tool, estimate the response rate and identify and address possible issues, in close collaboration with the assessment team.

For the period of data collection, a dashboard will be deployed that will allow the assessment team to monitor the progress of the data collection towards the set targets and accordingly adjust the data collection plans and provide instructions to the field teams. The collected data will further be monitored on a daily basis and when needed, debriefs will occur prior to the start of data collection in the mornings, to integrate feedback from previous days.

3.5 Data Processing & Analysis

Data entry & cleaning: A data cleaning SOP will be generated prior to the start of data collection, built off of the Minimum Standard Data Cleaning Checklist developed by IMPACT HQ, to guide data checking, cleaning, and consolidation processes, as well as indicator-specific parameters. Data cleaning will be carried out by the database officer on a daily basis. A pre-coded R script will be verified through manual data checks and data cleaning, particularly during the initial days of data collection. Specific attention will be granted to data collected by partner organizations, as their enumerators will be new to this exercise. It therefore may require additional cleaning work, although training will be provided before the start of data collection.

Any overarching adjustments to data collection procedures will be communicated through daily morning briefings with each operational base. Specific data that are deemed inconsistent will be highlighted and shared with the relevant Field Coordinator for clarification/rectification. These inquiries will be logged in a shared Google Spreadsheet in which focal points for each base will provide responses. All changes will then be made and logged by the technical AO/GIS officer. All issues raised during data collection will be addressed during the concurrent data cleaning phase and recorded in a log that enables retracing of cleaning steps. Please see Annex 4 for REACH Irag's in-country daily data cleaning process.

Data analysis: Prior to data analysis, a framework will be developed and agreed upon with all sectoral partners, including approaches to ranking and prioritizing severity of need. Once the full dataset is cleaned, analysis will be carried out using R. Once the data analysis has been carried out, the dataset will be made available to external partners to enable use of data for further analysis. A full data analysis framework outlining the level of analysis feasible with each indicator will be included as an annex to this TOR.

- Analysis will be conducted at the national level for all population groups. District-level and camp-level analysis
 will additionally be conducted. R will be used for all analysis.
- In order to run national level analysis, the dataset will be weighted. Findings from populations sampled using a cluster sample will be adjusted accordingly (scaling the confidence interval by the design effect).
- Additional cross-sectoral analysis will be jointly conducted with partners and will culminate in a workshop including all stakeholders (potentially incorporated within the HNO workshop). This may include additional analysis based on the gender of the head of the household, or households with at least one member reported a disability (in line with the <u>Washington Group Questions</u>), for which a significance test will be conducted (e.g. chi square).
- Efforts will be made to enhance the spatial analysis of MCNA X data, in close coordination with the GIS/Remote Sensing Unit at HQ. This could include the use of remote sensing imagery to overlay household data on needs and vulnerabilities with spatial indicators (e.g., proximity to water sources, land degradation, drought areas) to strengthen spatial analysis beyond administrative boundaries.
- In addition, an MSNI analysis will be created upon further discussion of the 2022 MSNI framework specificities in due course.

4. Key ethical considerations and related risks

- 5. Throughout all stages of the MCNA X research cycle, the assessment team will take all necessary measures stipulated in the global IMPACT Data Protection Policy in order to protect and safeguard personal data and to minimize the risk of attributing findings to specific individuals or households. In addition to personal data protection, the assessment team will uphold data responsibility: the safe, ethical and effective management of data as outlined in the IASC Operational Guidance on Data Responsibility in Humanitarian Action. This includes taking measures to prevent the exposure of sensitive non-personal data, ensuring data protection and security in line with in line with the principles for data responsibility in humanitarian action. This includes taking measures to prevent the exposure of sensitive non-personal data, ensuring data protection and security in line with the principles for data responsibility in humanitarian action. This includes taking measures to prevent the exposure of sensitive non-personal data, ensuring data protection and security in line with the principles for data responsibility in humanitarian action.
- 6. Similar to previous years, REACH will work with the OCHA Centre for Humanitarian Data to ensure that the publicly available MCNA X data set does not exceed the risk of disclosure (3% threshold), indicating that no individual respondents have a high risk of re-identification through the data set.²⁹ If this cannot be achieved, a redacted version of the data set will be uploaded on HDX Connect, and the full data set will only be made available on request, if appropriate. Furthermore, similar to the MCNA IX, a summary dataset will be prepared that provides the proportions and count of each question and answer category, by population group and aggregated to the district, governorate or national level, without risking re-identification of households.³⁰ Partners (including Clusters) who have received the complete MCNA X data set, must take appropriate organizational safeguards and procedures to treat the data

²⁸ See pg. 13-16 of the <u>IASC Operational Guidance on Data Responsibility in Humanitarian Action</u>.

²⁹ Please refer to the Centre for Humanitarian Data for more information and guidance on responsible data sharing.

³⁰ HDX, MCNA IX Summary Dataset, (October, 2021).

confidential. The below Data and Information Sensitivity Classification guides the treatment of MCNA X related data, both internally by REACH and externally by partners.

7. Data and Information Sensitivity Classification for MCNA X:31

Sensitivity Level	Data & Information Type	Classification
Low sensitivity Information or data that, if disclosed or accessed without proper authorization, are unlikely to cause any harm or negative impacts to affected people and/or humanitarian actors.	MCNA X presentation MCNA X Summary Dataset	Not restricted Data is shared on public platforms (REACH resource centre) and HDx platform under the condition that SDC has been applied and there is a 3% risk
Moderate Sensitivity Information or data that, if disclosed or accessed without proper authorization, are likely to cause minor harm or negative impacts and/or be disadvantageous for affected people and/or humanitarian actors.	Cluster specific presentations (e.g. presentation with local Protection focus) MCNA X preliminary findings, aggregated to district or camp level	Restricted Data can be shared within a wider community of organizations and data collection partners after bilateral request to REACH and/or signed MoU. Data is shared with AWG, IMWG and ICCG for analysis purposes. Dataset can be shared with partner organisations with specific guidance on analysis and in coordination with clusters.
High Sensitivity Information or data that, if disclosed or accessed without proper authorization, are likely to cause serious harm or negative impacts to affected people and/or humanitarian actors and/or damage to a response.	MCNA X complete data set, including individual level data set, personal information redacted Phone number lists (including phone numbers and location information)	Confidential Data or information can be disclosed within specific organizations or small community of organizations directly involved in delivering humanitarian assistance, based on a clearly specified purpose and related standards for data protection. Bilateral disclosure based on formal HDX Connect request. Complete data set shared with AWG, IMWG and ICCG
Severe Sensitivity Information or data that, if disclosed or accessed without proper authorization, are likely to cause severe harm or negative impacts and/or damage to affected people and/or humanitarian actors and/or	Raw MCNA X data set, including GPS points, names and contact details (PII deleted after completing data collection) Referral contacts shared with Protection focal point directly	Strictly Confidential Highly limited, bilateral disclosure only internally within REACH. Determined and approved on a case- by-case basis, with assurance of upholding the highest standards of data protections.

³¹ Based on <u>Information Sharing Protocol Template</u>, as developed by the Centre for Humanitarian Data

impede the conduct of the work of a	Data is shared with pre-agreed focal
response.	protection focal point, possibly with
	formal data sharing agreement.

8.

- 9. Statistical Disclosure Control: Statistical disclosure control (SDC) is a technique used to assess and lower the risk of a person or group being re-identified in the analysis of microdata. Applying SDC to microdata enables organizations to share the data more widely without exposing affected people to harm. SDC can be used to lower the risk of re-identification to an agreed threshold (see section 4. Data Responsibility for more on this threshold). The overall informational value or utility of a dataset will always be impacted when SDC is applied; striking an appropriate balance between re-identification risk and information loss key to ensuring safe, ethical and effective use of the data. Apply SDC on the MCNA microdata after removing direct identifiers to determine the risk of re-identification of respondents, and subsequently lower that risk to an acceptable level before sharing the data in-line with the Data and Information Sensitivity Classification for MCNA IX (see section 4.1).³²
- 10. The REACH MCNA Team in Iraq will appropriately manage any data incidents (such as the unwarranted exposure of sensitive data through a breach or through accidental disclosure) that may occur throughout the MCNA. REACH will endeavor to share any data incidents with OCHA in it's capacity as co-chair of the AWG, as appropriate.

The proposed research design meets / does not meet the following criteria:

The proposed research design	Yes/ No	Details if no (including mitigation)
Has been coordinated with relevant stakeholders to avoid unnecessary duplication of data collection efforts?	Yes	
Respects respondents, their rights and dignity (specifically by: seeking informed consent, designing length of survey/ discussion while being considerate of participants' time, ensuring accurate reporting of information provided)?	Yes	
Does not expose data collectors to any risks as a direct result of participation in data collection?	Yes	
Does not expose respondents / their communities to any risks as a direct result of participation in data collection?	Yes	
Does not involve collecting information on specific topics which may be stressful and/ or re-traumatising for research participants (both respondents and data collectors)?	No	Certain questions pertain to displacement, trauma, and other sensitive issues. Sensitivity has been taken into account in phrasing and answer options.
Does not involve data collection with minors i.e. anyone less than 18 years old?	Yes	
Does not involve data collection with other vulnerable groups e.g. persons with disabilities, victims/ survivors of protection incidents, etc.?	No	As the selection of households to be interviewed is random, vulnerable groups may be included in the survey. However, they are not targeted because of these vulnerabilities

³² For more information on SDC, review this <u>Guidance Note on Statistical Disclosure Control</u>.

www.reach-initiative.org 14

_

Follows IMPACT SOPs for management of personally	Yes	
identifiable information?		

MCNA X enumerators will share Iraq Information Centre (IIC) information and contact cards, as the central (free of charge) information hotline for affected communities to request information or support, as well as to raise complaints. Through this, MCNA X seeks to contribute to the two-way communication and accountability to affected populations. Depending on respondent's survey answers, for example on missing civil documentation, reference to the IIC hotline as support provider is additionally made by enumerators.

5. Roles and responsibilities

Table 3: Description of roles and responsibilities

Task Description	Responsible	Accountable	Consulted	Informed
Research design	Focal Point (FP), Assessment Officer (AO)	Research Manager (RM)	AIM WG, IMPACT Research Design and Data Unit	Country Coordinator (CC)
Supervising data collection	Field Coordinators; Operations Manager; FP, AO, JAO	FP	RM, IMPACT Research and Data Unit	AIM WG, CC
Data processing (checking, cleaning)	Data Base Officer (DBO)	HQ Technical Focal Point (TFP)	AO, IMPACT HQ Data Unit	RM, CC
Data analysis	TFP, DBO	FP, AO, TFP	RM, IMPACT Research and Data Unit AWG (joint analysis) ICCG	CC
Output production	FP, AO, JAO	RM	CC, IMPACT Research and Data Unit, IMPACT Reporting Unit	AIM WG, ICCG
Dissemination	FP, AO, RM	CC	IMPACT Reporting Unit, AWG, ICCG, HCT	
Monitoring & Evaluation	FP	FP	RM	CC, Impact Research Design and Data Unit
Lessons learned	FP, AO	FP	RM, CC	Impact Research and Design Unit

Responsible: the person(s) who executes the task

Accountable: the person who validates the completion of the task and is accountable of the final output or milestone

Consulted: the person(s) who must be consulted when the task is implemented **Informed:** the person(s) who need to be informed when the task is completed

6. Data Analysis Plan

7. Data Management Plan

8. Monitoring & Evaluation Plan

IMPACT Objective	External M&E Indicator	Internal M&E Indicator	Focal point	Tool	Will indicator be tracked?
		# of downloads of x product from Resource Center	Country request to HQ		X Yes
	Number of humanitarian	# of downloads of x product from Relief Web	Country request to HQ		X Yes
Humanitarian stakeholders are	organisations accessing IMPACT services/products	# of downloads of x product from Country level platforms	Country team	Hoor log	X Yes
accessing IMPACT products	Number of individuals accessing IMPACT services/products	# of page clicks on x product from REACH global newsletter	Country request to HQ	User_log	X Yes
		# of page clicks on x product from country newsletter, sendingBlue, bit.ly	Country team		X Yes
		# of visits to x webmap/x dashboard	Country request to HQ		□ Yes
IMPACT activities		# references in HPC documents (HNO, SRP, Flash			Iraq HNO 2022
contribute to better		appeals, Cluster/sector strategies)			Iraq HRP 2022
program implementation and coordination of the humanitarian response	Number of humanitarian organisations utilizing IMPACT services/products	# references in single agency documents	Country team	Reference_log	Cluster specific strategies
Humanitarian stakeholders are	Humanitarian actors use IMPACT evidence/products as a	Perceived relevance of IMPACT country-programs Perceived usefulness and influence of IMPACT outputs	Country	Usage_Feedb ack and	Usage feedback – September to December 2022
using IMPACT products	basis for decision making, aid planning and delivery	Recommendations to strengthen IMPACT programs	- team	Usage_Survey template	Presentation feedback

		Perceived capacity of IMPACT staff			
	Number of humanitarian	Perceived quality of outputs/programs			
	documents (HNO, HRP, cluster/agency strategic plans, etc.) directly informed by IMPACT products	Recommendations to strengthen IMPACT programs			
Humanitarian stakeholders are	Number and/or percentage of humanitarian organizations directly	# of organisations providing resources (i.e.staff, vehicles, meeting space, budget, etc.) for activity implementation	Country	Faccass and I	X Yes
engaged in IMPACT programs throughout the	contributing to IMPACT programs (providing resources, participating to	# of organisations/clusters inputting in research design and joint analysis # of organisations/clusters attending briefings on	Country team	Engagement_I og	X Yes
research cycle	presentations, etc.)	findings;			X Yes

ANNEX 1: SAMPLING FRAMES & TARGET SAMPLES (PER DISTRICT/CAMP, PER POPULATION GROUP, 5% BUFFER)

			# surveys						Effective	%	Confide			
Population	Governorat		with	# units to		Cluster			min.	buff	nce	Error		
Group	е	District	buffer	assess	Cluster size	size set	ICC	DESS	sample	er	level	margin	Population	Sampling type
Host														
Community	Ninewa	Al-Baaj	90	17	5.29	5	0.06	1.2574	72	0.05	0.9	0.1	159167	Cluster sampling
Host														
Community	Al-Anbar	Al-Falluja	90	17	5.29	5	0.06	1.2574	72	0.05	0.9	0.1	639139	Cluster sampling
Host														
Community	Ninewa	Al-Hatra	95	17	5.59	5	0.06	1.2754	74	0.05	0.9	0.1	111801	Cluster sampling
Host														
Community	Kirkuk	Al-Hawiga	90	18	5	5	0.06	1.24	73	0.05	0.9	0.1	268549	Cluster sampling
Host						_								
Community	Baghdad	Al-Rutba	95	16	5.94	5	0.06	1.2964	73	0.05	0.9	0.1	25635	Cluster sampling
Host	Di ala	Dan ba	00	40	_	_	0.00	4.24	72	0.05	0.0	0.4	542444	Charles as a sall as
Community	Diyala	Baquba	90	18	5	5	0.06	1.24	73	0.05	0.9	0.1	513444	Cluster sampling
Host Community	Erbil	Erbil	90	18	5	5	0.06	1.24	73	0.05	0.9	0.1	1346120	Cluster sampling
Host	EIDII	EIDII	90	10	э	3	0.06	1.24	/3	0.03	0.9	0.1	1340120	Cluster sampling
Community	Ninewa	Sinjar	90	17	5.29	5	0.06	1.2574	72	0.05	0.9	0.1	203754	Cluster sampling
Host	Millewa	Jirijai	30	17	5.25		0.00	1.2374	12	0.03	0.5	0.1	203734	Cluster sampling
Community	Duhok	Sumail	90	18	5	5	0.06	1.24	73	0.05	0.9	0.1	708314	Cluster sampling
Host	- Janon	Tooz	30				0.00			0.00	0.5	0.12	, 5552 .	e.uste. sampinig
Community	Salah-al-Din	Khurmato	90	17	5.29	5	0.06	1.2574	72	0.05	0.9	0.1	214974	Cluster sampling
IDPs out-of-		Abu Al-											-	μ β
camp	Al-Basrah	Khaseeb	80	10	8	5	0.06	1.42	56	0.05	0.9	0.1	215	Cluster sampling
IDPs out-of-		Al-												
camp	Baghdad	Adhamiya	85	11	7.73	5	0.06	1.4038	61	0.05	0.9	0.1	344	Cluster sampling
IDPs out-of-														
camp	Duhok	Al-Amadiya	100	9	11.11	5	0.06	1.6066	62	0.05	0.9	0.1	402	Cluster sampling
IDPs out-of-														
camp	Ninewa	Al-Baaj	135	8	16.88	5	0.06	1.9528	69	0.05	0.9	0.1	1255	Cluster sampling
IDPs out-of-											_	_	_	
camp	Al-Basrah	Al-Basrah	85	12	7.08	5	0.06	1.3648	62	0.05	0.9	0.1	349	Cluster sampling
IDPs out-of-	Al-	AL Diversi	65		7.70	_	0.00	4 4000		0.05	0.0	0.1	2.0	Claster and the
camp	Qadisiyah	Al-Diwaniya	85	11	7.73	5	0.06	1.4038	61	0.05	0.9	0.1	340	Cluster sampling
IDPs out-of-	A1 Amban	Al Falleria	105	43	0.75	_	0.00	1 465	70	0.05	0.0	0.1	2204	Charten semaline
camp	Al-Anbar	Al-Falluja Al-	105	12	8.75	5	0.06	1.465	72	0.05	0.9	0.1	3284	Cluster sampling
IDPs out-of-	Ninewa	Hamdaniya	425	5	85	5	0.06	6.04	70	0.05	0.9	0.1	4318	Cluster sampling
camp IDPs out-of-	ivillewa	Halliualliya	425	3	85	3	0.06	0.04	70	0.03	0.9	0.1	4318	Ciustei sailihiilik
camp	Ninewa	Al-Hatra	365	5	73	5	0.06	5.32	69	0.05	0.9	0.1	702	Cluster sampling
curry	IAILICAA	Ai-Hatia	303		/3	J .	0.00	5.52	03	0.03	0.5	0.1	702	Ciustei sairipiirig

IDPs out-of-		Al-												
camp	Baghdad	Kadhmiyah	95	14	6.79	5	0.06	1.3474	71	0.05	0.9	0.1	1440	Cluster sampling
IDPs out-of-	Dagiluau	Radilliliyali	33	14	0.73	,	0.00	1.5474	/1	0.03	0.5	0.1	1440	Cluster sampling
camp	Maysan	Al-Kahla	90	9	10	5	0.06	1.54	58	0.05	0.9	0.1	251	Cluster sampling
IDPs out-of-	aysa	7.1.11.11.0	30				0.00	2.5	- 30	0.00	0.5			e.aste. sampB
camp	Al-Anbar	Al-Kaim	100	9	11.11	5	0.06	1.6066	62	0.05	0.9	0.1	348	Cluster sampling
IDPs out-of-														erenen cerripiini
camp	Baghdad	Al-Karkh	95	13	7.31	5	0.06	1.3786	69	0.05	0.9	0.1	640	Cluster sampling
IDPs out-of-														
camp	Diyala	Al-Khalis	95	11	8.64	5	0.06	1.4584	65	0.05	0.9	0.1	590	Cluster sampling
IDPs out-of-	<u> </u>													Cluster sampling with size
camp	Al-Najaf	Al-Kufa	67	11	1	5	0.06	1	67	0.15	0.9	0.1	370	1 = random sampling
IDPs out-of-	,													. 0
camp	Wassit	Al-Kut	85	14	6.07	5	0.06	1.3042	65	0.05	0.9	0.1	479	Cluster sampling
•		Al-												. 9
IDPs out-of-		Mahmoudiy												
camp	Baghdad	a	105	12	8.75	5	0.06	1.465	72	0.05	0.9	0.1	1469	Cluster sampling
IDPs out-of-														·
camp	Ninewa	Al-Mosul	105	14	7.5	5	0.06	1.39	76	0.05	0.9	0.1	14299	Cluster sampling
IDPs out-of-														
camp	Babil	Al-Mussyab	95	14	6.79	5	0.06	1.3474	71	0.05	0.9	0.1	2541	Cluster sampling
IDPs out-of-														
camp	Al-Najaf	Al-Najaf	100	11	9.09	5	0.06	1.4854	67	0.05	0.9	0.1	1003	Cluster sampling
IDPs out-of-														
camp	Thi-Qar	Al-Nasiriya	85	11	7.73	5	0.06	1.4038	61	0.05	0.9	0.1	296	Cluster sampling
IDPs out-of-														
camp	Al-Anbar	Al-Ramadi	150	7	21.43	5	0.06	2.2258	67	0.05	0.9	0.1	1087	Cluster sampling
IDPs out-of-														
camp	Ninewa	Al-Risafa	130	7	18.57	5	0.06	2.0542	63	0.05	0.9	0.1	358	Cluster sampling
IDPs out-of-														
camp	Baghdad	Al-Rutba	115	8	14.38	5	0.06	1.8028	64	0.05	0.9	0.1	465	Cluster sampling
IDPs out-of-														
camp	Ninewa	Al-Shikhan	125	9	13.89	5	0.06	1.7734	70	0.05	0.9	0.1	3186	Cluster sampling
_	Al-	Al-												
IDPs out-of-	Sulaymaniy	Sulaymaniy				_								
camp	ah	ah	95	17	5.59	5	0.06	1.2754	74	0.05	0.9	0.1	14086	Cluster sampling
IDPs out-of-				_		_								
camp	Al-Basrah	Al-Zubair	85	8	10.62	5	0.06	1.5772	54	0.05	0.9	0.1	203	Cluster sampling
IDPs out-of-				_		_		_						Cluster sampling with size
camp	Al-Anbar	Ana	65	6	1	5	0.06	1	65	0.15	0.9	0.1	319	1 = random sampling
IDPs out-of-			475	_	24.55	_	0.00	2 20= :		0.05			2000	
camp	Ninewa	Aqra	170	7	24.29	5	0.06	2.3974	71	0.05	0.9	0.1	3909	Cluster sampling
IDPs out-of-	Calab at D	Dalad	405	4.0	40.5	_	0.00	4 57	c-	0.05	0.0	0.4	001	Chushan samuel : -
camp	Salah-al-Din	Balad	105	10	10.5	5	0.06	1.57	67	0.05	0.9	0.1	904	Cluster sampling
IDPs out-of-	Directo	Do suik -	440	4.0	40	_	0.00	4.54	7.	0.05	0.0	0.4	2446	Chushan samuel : -
camp	Diyala	Baquba	110	11	10	5	0.06	1.54	71	0.05	0.9	0.1	3446	Cluster sampling

Salah-al-Din													Cluster sampling with size
	Beygee	60	6	1	5	0.06	1	60	0.15	0.9	0.1	212	1 = random sampling
Al-	,,,												, ,
Sulaymaniy	Chamchama												
ah	1	95	13	7.31	5	0.06	1.3786	69	0.05	0.9	0.1	1504	Cluster sampling
Kirkuk	Daquq	105	10	10.5	5	0.06	1.57	67	0.05	0.9	0.1	845	Cluster sampling
Al-													
Sulaymaniy	Derbendikh												
ah	an	95	13	7.31	5	0.06	1.3786	69	0.05	0.9	0.1	1039	Cluster sampling
													Cluster sampling with size
Kirkuk	Dibis	66	5	1	5	0.06	1	66	0.15	0.9	0.1	332	1 = random sampling
Al-													
Sulaymaniy													
ah	Dokan	90	13	6.92	5	0.06	1.3552	66	0.05	0.9	0.1	868	Cluster sampling
Duhok	Duhok	90	17	5.29	5	0.06	1.2574	72	0.05	0.9	0.1	4356	Cluster sampling
					_								
	Erbil	95	15	6.33	5	0.06	1.3198	72	0.05	0.9	0.1	31387	Cluster sampling
Al-													
					_								
ah	Halabcha	85	14	6.07	5	0.06	1.3042	65	0.05	0.9	0.1	703	Cluster sampling
		00		44.05	_	0.00	4.645	5.0	0.05		0.4	222	a
	Heet	90	8	11.25	5	0.06	1.615	56	0.05	0.9	0.1	233	Cluster sampling
	Kala :	05	15	C 22	_	0.00	1 2100	72	0.05	0.0	0.1	2052	Charten committee
dII	Kdldf	95	15	0.33	Э	0.06	1.3198	72	0.05	0.9	0.1	2053	Cluster sampling
Vorbola	Vorbola	OE.	12	7 21	_	0.06	1 2706	60	0.05	0.0	0.1	1620	Cluster campling
Kerbeia	Kerbeia	95	15	7.51	3	0.00	1.5760	09	0.03	0.9	0.1	1036	Cluster sampling
Divala	Khanagin	100	1.1	714	5	0.06	1 2694	72	0.05	0.0	0.1	2270	Cluster sampling
Diyala	Kilaliaqiii	100	14	7.14	,	0.00	1.3064	/3	0.03	0.3	0.1	2378	Cluster sampling
Divala	Kifri	115	10	11 5	5	0.06	1 63	71	0.05	0.9	0.1	1788	Cluster sampling
Diyala	KIIII	113	10	11.5	,	0.00	1.05	71	0.03	0.5	0.1	1700	cruster sumpling
Kirkuk	Kirkuk	105	12	8 75	5	0.06	1 465	72	0.05	0.9	0.1	13944	Cluster sampling
KII KUK	KIIKUK	103	12	0.73	,	0.00	1.403	72	0.03	0.5	0.1	13344	cruster sumpling
Erbil	Kovsiniag	90	12	7.5	5	0.06	1.39	65	0.05	0.9	0.1	482	Cluster sampling
Al-	,,			7.5		0.00	2.00		0.00	0.5		.02	e.aste. sampB
ah	Rania	80	13	6.15	5	0.06	1.309	61	0.05	0.9	0.1	351	Cluster sampling
									0.00				
Erbil	Rawanduz	145	6	24.17	5	0.06	2.3902	61	0.05	0.9	0.1	329	Cluster sampling
-			_										, b
Salah-al-Din	Samarra	100	12	8.33	5	0.06	1.4398	69	0.05	0.9	0.1	2623	Cluster sampling
												3.20	
Erbil	Shaqlawa	115	10	11.5	5	0.06	1.63	71	0.05	0.9	0.1	832	Cluster sampling
KASA KASA C EASA K C C K EASA E S	Kirkuk Al- Sulaymaniy ah Cirkuk Al- Sulaymaniy ah Duhok Erbil Al- Sulaymaniy ah Al-Anbar Al- Sulaymaniy ah Cerbela Diyala Cirkuk Erbil Al- Sulaymaniy ah Cerbil Al- Sulaymaniy ah	Kirkuk Daquq Al- Sulaymaniy ah Derbendikh an Kirkuk Dibis Al- Sulaymaniy ah Dokan Duhok Duhok Erbil Erbil Al- Sulaymaniy ah Halabcha Al-Anbar Heet Al- Sulaymaniy ah Kalar Kerbela Kerbela Diyala Khanaqin Diyala Kifri Kirkuk Kirkuk Erbil Koysinjaq Al- Sulaymaniy ah Rania Erbil Rawanduz Salah-al-Din Samarra	Kirkuk Daquq 105 Al- Gulaymaniy Derbendikh an 95 Kirkuk Dibis 66 Al- Gulaymaniy Bh Dokan 90 Duhok Duhok 90 Erbil Erbil 95 Al- Gulaymaniy Bh Halabcha 85 Al-Anbar Heet 90 Al- Gulaymaniy Bh Kalar 95 Kerbela Kerbela 95 Cerbela Kirkuk 105 Erbil Koysinjaq 90 Al- Gulaymaniy Bh Rania 80 Erbil Rawanduz 145 Galah-al-Din Samarra 100	Kirkuk Daquq 105 10 Al-Sulaymaniy Derbendikh 3 13 Kirkuk Dibis 66 5 Al-Sulaymaniy 3h 90 13 Duhok Duhok 90 17 Erbil Erbil 95 15 Al-Sulaymaniy 3h 44 44 Al-Anbar Heet 90 8 Al-Anbar Heet 90 8 Al-Anbar Heet 90 8 Al-Sulaymaniy 3h Kalar 95 15 Kerbela Kerbela 95 13 10 Diyala Kifri 115 10 14 Diyala Kifri 115 10 12 Erbil Koysinjaq 90 12 12 Erbil Rawanduz 145 6 Salah-al-Din Samarra 100 12	Kirkuk Daquq 105 10 10.5 Al-Bulaymaniy Derbendikh an 95 13 7.31 Kirkuk Dibis 66 5 1 Al-Bulaymaniy Dokan 90 13 6.92 Duhok Duhok 90 17 5.29 Erbil Erbil 95 15 6.33 Al-Bulaymaniy Halabcha 85 14 6.07 Al-Anbar Heet 90 8 11.25 Al-Bulaymaniy Sah Kalar 95 15 6.33 Kerbela Ferbil 95 13 7.31 7.31 Kerbela Filay 15 6.33 7.31 7	Kirkuk Daquq 105 10 10.5 5 Al- Bulaymaniy bih an 95 13 7.31 5 Kirkuk Dibis 66 5 1 5 Al- Bulaymaniy bih Dokan 90 13 6.92 5 Duhok Duhok 90 17 5.29 5 Erbil Erbil 95 15 6.33 5 Al-Anbar Heet 90 8 11.25 5 Al-Anbar Heet 90 8 11.25 5 Al-Anbar Heet 95 15 6.33 5 Kerbela Kerbela 95 13 7.31 5 Kerbela Kerbela 95 15 6.33 5 Kirkuk Kirkuk 105 12 8.75 5 Al- Bulaymaniy bih Kirkuk 105 12 8.75 5 Kirkuk Kirkuk 105 12 8.75 5 Kirkuk Kirkuk 105 12 8.75 5 Kirbil Koysinjaq 90 12 7.5 5 Kirbil Koysinjaq 90 12 7.5 5 Kirbil Rawanduz 145 6 24.17 5 Salah-al-Din Samarra 100 12 8.33 5	Kirkuk Daquq 105 10 10.5 5 0.06 Al-Bulaymaniy Derbendikh an 95 13 7.31 5 0.06 Kirkuk Dibis 66 5 1 5 0.06 Al-Bulaymaniy sh Dokan 90 17 5.29 5 0.06 Cerbil Erbil 95 15 6.33 5 0.06 Al-Bulaymaniy sh Halabcha 85 14 6.07 5 0.06 Al-Bulaymaniy sh Heet 90 8 11.25 5 0.06 Al-Bulaymaniy sh Heet 90 8 11.25 5 0.06 Al-Bulaymaniy sh Halabcha 85 14 6.07 5 0.06 Al-Bulaymaniy sh Halabcha 95 15 6.33 5 0.06 Gerbela Kerbela 95 13 7.31 5 0.06 Gerbela Kifri 115 10	Cirkuk Daquq 105 10 10.5 5 0.06 1.57	Cirkuk Daquq 105 10 10.5 5 0.06 1.57 67	Kirkuk Daquq 105 10 10.5 5 0.06 1.57 67 0.05 Al- Bulaymaniy and 95 13 7.31 5 0.06 1.3786 69 0.05 Kirkuk Dibis 66 5 1 5 0.06 1.3786 69 0.05 Kirkuk Dibis 66 5 1 5 0.06 1.3552 66 0.15 Al- Bulaymaniy and Dokan 90 13 6.92 5 0.06 1.3552 66 0.05 Duhok Duhok 90 17 5.29 5 0.06 1.2574 72 0.05 Birbil Erbil 95 15 6.33 5 0.06 1.3198 72 0.05 Al-Anbar Heet 90 8 11.25 5 0.06 1.3042 65 0.05 Al-Anbar Heet 90 8 11.25 5 0.06 1.3198 72 0.05 Al-Anbar Heet 90 8 11.25 5 0.06 1.3198 72 0.05 Kerbela Kerbela 95 13 7.31 5 0.06 1.3198 72 0.05 Kerbela Kerbela 95 13 7.31 5 0.06 1.3786 69 0.05 Diyala Khanaqin 100 14 7.14 5 0.06 1.3786 69 0.05 Diyala Kifri 115 10 11.5 5 0.06 1.364 73 0.05 Cirkuk Kirkuk 105 12 8.75 5 0.06 1.465 72 0.05 Erbil Koysinjaq 90 12 7.5 5 0.06 1.39 65 0.05 Erbil Rawanduz 145 6 24.17 5 0.06 2.3902 61 0.05 Erbil Rawanduz 145 6 24.17 5 0.06 1.4398 69 0.05	Cirkuk Daquq 105 10 10.5 5 0.06 1.57 67 0.05 0.9	Cirkuk Daquq 105 10 10.5 5 0.06 1.57 67 0.05 0.9 0.1	Cirkuk Daquq 105 10 10.5 5 0.06 1.57 67 0.05 0.9 0.1 845

IDPs out-of-														
camp	Ninewa	Sinjar	110	11	10	5	0.06	1.54	71	0.05	0.9	0.1	6084	Cluster sampling
IDPs out-of-		5ga.				J	0.00	2.0	, -	0.00	0.5	0.12	5551	Gradier dampining
camp	Duhok	Sumail	105	14	7.5	5	0.06	1.39	76	0.05	0.9	0.1	11313	Cluster sampling
IDPs out-of-						_		. ====						
camp	Ninewa	Telafar	120	9	13.33	5	0.06	1.7398	69	0.05	0.9	0.1	1555	Cluster sampling
IDPs out-of- camp	Salah-al-Din	Tikrit	100	14	7.14	5	0.06	1.3684	73	0.05	0.9	0.1	2331	Cluster sampling
IDPs out-of-	Sulan ai Din	TIKITE	100	17	7.14	<u> </u>	0.00	1.5004	73	0.03	0.5	0.1	2331	Cluster sumpling
camp	Ninewa	Tilkaef	140	8	17.5	5	0.06	1.99	70	0.05	0.9	0.1	2900	Cluster sampling
IDPs out-of-		Tooz												
camp	Salah-al-Din	Khurmato	125	9	13.89	5	0.06	1.7734	70	0.05	0.9	0.1	3268	Cluster sampling
IDPs out-of- camp	Duhok	Zakho	120	11	10.91	5	0.06	1.5946	75	0.05	0.9	0.1	7209	Cluster sampling
Callip	Dullok		-											Cluster sampling
Returnees	Ninewa	Al-Baaj	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	8591	Cluster sampling
Returnees	Salah-al-Din	Al-Daur	145	8	18.12	5	0.06	2.0272	72	0.05	0.9	0.1	10113	Cluster sampling
Returnees	Al-Anbar	Al-Falluja	95	16	5.94	5	0.06	1.2964	73	0.05	0.9	0.1	99282	Cluster sampling
	7.1.7.1.20.	Al-	- 55		3.3 .		0.00	1.250	,,,	0.00	0.5	0.12	33202	Gradier dampining
Returnees	Ninewa	Hamdaniya	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	30808	Cluster sampling
Returnees	Ninewa	Al-Hatra	120	11	10.91	5	0.06	1.5946	75	0.05	0.9	0.1	7666	Cluster sampling
														. 9
Returnees	Kirkuk	Al-Hawiga Al-	95	16	5.94	5	0.06	1.2964	73	0.05	0.9	0.1	27347	Cluster sampling
Returnees	Baghdad	Kadhmiyah	95	14	6.79	5	0.06	1.3474	71	0.05	0.9	0.1	4498	Cluster sampling
	Ĭ	,												. 9
Returnees	Al-Anbar	Al-Kaim	95	15	6.33	5	0.06	1.3198	72	0.05	0.9	0.1	17233	Cluster sampling
Returnees	Diyala	Al-Khalis	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	13097	Cluster sampling
		Al-												
Returnees	Baghdad	Mahmoudiy a	100	14	7.14	5	0.06	1.3684	73	0.05	0.9	0.1	10139	Cluster sampling
	Ĭ													. 9
Returnees	Ninewa	Al-Mosul	95	17	5.59	5	0.06	1.2754	74	0.05	0.9	0.1	173737	Cluster sampling
Returnees	Diyala	Al- Muqdadiya	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	9213	Cluster sampling
Returnees	,													. 9
Returnees	Al-Anbar	Al-Ramadi	95	16	5.94	5	0.06	1.2964	73	0.05	0.9	0.1	96993	Cluster sampling
Returnees	Baghdad	Al-Rutba	140	8	17.5	5	0.06	1.99	70	0.05	0.9	0.1	4462	Cluster sampling
												<u> </u>		Cluster sampling with size
Returnees	Ninewa	Al-Shikhan	66	6	1	5	0.06	1	66	0.15	0.9	0.1	326	1 = random sampling
Returnees	Salah-al-Din	Al-Shirqat	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	25197	Cluster sampling
Returnees	Al-Anbar	Ana	105	12	8.75	5	0.06	1.465	72	0.05	0.9	0.1	5463	Cluster sampling
Returnees	Salah-al-Din	Balad	120	11	10.91	5	0.06	1.5946	75	0.05	0.9	0.1	14122	Cluster sampling
Returnees	Salah-al-Din	Beygee	95	16	5.94	5	0.06	1.2964	73	0.05	0.9	0.1	24374	Cluster sampling

Returnees	Kirkuk	Daquq	110	10	11	5	0.06	1.6	69	0.05	0.9	0.1	1054	Cluster sampling
Returnees	Kirkuk	Dibis	355	5	71	5	0.06	5.2	68	0.05	0.9	0.1	1206	Cluster sampling
Returnees	Al-Anbar	Haditha	95	14	6.79	5	0.06	1.3474	71	0.05	0.9	0.1	4620	Cluster sampling
Returnees	Al-Anbar	Heet	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	29986	Cluster sampling
Returnees	Diyala	Khanaqin	95	15	6.33	5	0.06	1.3198	72	0.05	0.9	0.1	17267	Cluster sampling
Returnees	Diyala	Kifri	63	1	1	5	0.06	1	63	0.15	0.9	0.1	250	Cluster sampling with size 1 = random sampling
Returnees	Kirkuk	Kirkuk	120	10	12	5	0.06	1.66	72	0.05	0.9	0.1	27174	Cluster sampling
Returnees	Erbil	Makhmour	100	15	6.67	5	0.06	1.3402	75	0.05	0.9	0.1	8746	Cluster sampling
Returnees	Salah-al-Din	Samarra	130	9	14.44	5	0.06	1.8064	72	0.05	0.9	0.1	9651	Cluster sampling
Returnees	Ninewa	Sinjar	100	14	7.14	5	0.06	1.3684	73	0.05	0.9	0.1	20579	Cluster sampling
Returnees	Ninewa	Telafar	95	16	5.94	5	0.06	1.2964	73	0.05	0.9	0.1	60633	Cluster sampling
Returnees	Salah-al-Din	Tikrit	105	12	8.75	5	0.06	1.465	72	0.05	0.9	0.1	31497	Cluster sampling
Returnees	Ninewa	Tilkaef	95	15	6.33	5	0.06	1.3198	72	0.05	0.9	0.1	21447	Cluster sampling
Returnees	Salah-al-Din	Tooz Khurmato	145	9	16.11	5	0.06	1.9066	76	0.05	0.9	0.1	9722	Cluster sampling

Target sample: IDP households living in-camp.

Governorate	Camp name	#	# units to	%	Confidence level	Error	Population	Sampling type
		surveys	assess	buffer		margin		
Al-Sulaymaniyah	Arbat IDP	76	1	0.05	0.95	0.1	281	2 stages random - st1
Al-Sulaymaniyah	Ashti IDP	97	1	0.05	0.95	0.1	1836	2 stages random - st1
Erbil	Baharka	93	1	0.05	0.95	0.1	959	2 stages random - st1
Duhok	Bajet Kandala	96	1	0.05	0.95	0.1	1694	2 stages random - st1
Duhok	Berseve 1	93	1	0.05	0.95	0.1	1008	2 stages random - st1
Duhok	Berseve 2	96	1	0.05	0.95	0.1	1424	2 stages random - st1

Duhok	Chamishku	99	1	0.05	0.95	0.1	4306	2 stages random - st1
Duhok	Darkar	89	1	0.05	0.95	0.1	625	2 stages random - st1
Duhok	Dawadia	86	1	0.05	0.95	0.1	497	2 stages random - st1
Erbil	Debaga 1	95	1	0.05	0.95	0.1	1386	2 stages random - st1
Ninewa	Essian	98	1	0.05	0.95	0.1	2551	2 stages random - st1
Erbil	Harshm	77	1	0.05	0.95	0.1	289	2 stages random - st1
Ninewa	Hasansham U2	92	1	0.05	0.95	0.1	826	2 stages random - st1
Ninewa	Hasansham U3	95	1	0.05	0.95	0.1	1264	2 stages random - st1
Duhok	Kabarto 1	98	1	0.05	0.95	0.1	2339	2 stages random - st1
Duhok	Kabarto 2	98	1	0.05	0.95	0.1	2351	2 stages random - st1
Duhok	Khanke	98	1	0.05	0.95	0.1	2744	2 stages random - st1
Ninewa	Khazer M1	93	1	0.05	0.95	0.1	995	2 stages random - st1
Ninewa	Mamilian	66	1	0.05	0.95	0.1	169	2 stages random - st1
Ninewa	Mamrashan	96	1	0.05	0.95	0.1	1555	2 stages random - st1
Ninewa	Qayyarah-Jad'ah 5	93	1	0.05	0.95	0.1	970	2 stages random - st1
Diyala	Qoratu	53	1	0.05	0.95	0.1	102	2 stages random - st1
Duhok	Rwanga Community	98	1	0.05	0.95	0.1	2422	2 stages random - st1
Duhok	Shariya	98	1	0.05	0.95	0.1	2451	2 stages random - st1

MSNA - Research Cycle Name, release date

Ninewa	Sheikhan	89	1	0.05	0.95	0.1	639	2 stages random - st1	
Al-Sulaymaniyah	Tazade	67	1	0.05	0.95	0.1	181	2 stages random - st1	

ANNEX 2: REMOTE DATA COLLECTION

For those districts where data collection through face-to-face interviews is inhibited by safety concerns and/or movement restrictions, a non-probability purposive quota sampling approach will be employed. The minimum quotas that are established through this approach will ensure that the collected data is indicative of the geographic location (district) (quota 1) and population groups (IDPs in-camp, IDPs out of camp and returnees) (quota 2).

Wherever the minimum quota targets (as outlined in annex 2) cannot be fulfilled with the available phone numbers, REACH aims to combine the quota-based sampling with a snowball sampling approach. Through snowball sampling, interviewees refer to other potential participants from the same quotas that can be contacted for the assessment. The MCNA assessment team will keep track of the targets and will decide to complement the quota sampling approach with snowball sampling if the number of responses are showing an underrepresentation of certain districts or population groups. In this case, the assessment team will instruct field managers to further instruct enumerators to specifically ask for a certain type of contact. This will be done by asking respondents to specifically recommend individuals in their network that fall within any of the underrepresented sub-group profiles out of those identified above.

While most respondents for the quota sampling are found through previous REACH assessments, some can also be found through local networks of partner organisations. Respondents that are found through local networks of partner organisations can stem from either beneficiary lists or non-beneficiary lists. In addition, and to diversify the list of respondents, individuals outside of the partner organisations' networks will also have to be reached out to, by applying a snowball sampling methodology.

For the remote data collection, field coordinators will distribute the phone numbers among the field teams and keep track of the response rate to ensure that the set targets are achieved. If a phone line is busy, the enumerators will call the same number again twice before they mark it as "non-responsive". To that end, a back-up list of phone numbers will be prepared. For those districts and population groups where either too few phone numbers are available or where the set targets might not be achieved, snowball sampling will be triggered and the enumerators will ask the respondents if they are willing to provide the contact details of other IDP or returnee households living in the same district.

The phone numbers that are shared with the field teams to conduct the phone-based interviews should be classified as "Strictly Confidential" and treated in line with the classification table above. The number of devices and servers holding the contact details that are used for the remote data collection part of the MCNA X data collection will be minimized and access rights will only be granted to a limited number of individuals. Upon their usage or upon completion of the assessment, all phone numbers collected and stored for the MCNA X will be deleted. All partner organisations that have shared phone numbers with REACH in order to maximise the coverage of the remote MCNA X data collection will be provided with a Phone Number Sharing Commitment prior to the start of data collection as well as a Data Deletion Confirmation upon completion of the assessment.

ANNEX 3: DAILY DATA CLEANING PROCEDURE

- o Data is downloaded and cleaned on a daily basis, building on an R cleaning script.
- Google spreadsheets will be used for the REACH cleaning logs and Partner cleaning logs (one for each Partner organisation), in which data errors/logical errors are flagged (based on the automated R cleaning script), and feedback is requested from the field teams. Such feedback may include confirmation of the data entry, correction, or clarification.
- The cleaning log will be updated daily, seeking feedback from REACH SFOs and Partner Organisations. Daily feedback is needed to avoid enumerators forgetting about the specific data entries.
- After the first week of data collection, a call may be scheduled with REACH SFOs to discuss common problems in data cleaning, allowing adjustments in both enumerator training/guidance, as well as the cleaning script (to avoid redundance in cleaning checks).
- o Partners may require additional feedback and guidance during the cleaning process, and their data should be monitored closely to ensure data quality.

Daily Processes during Data Collection

Step	Action	Frequency	Responsible
1. Data	cleaning and geospatial checks		
1.1	Download data and audit file from the server from previous day of data collection	Daily	DBO
1.2	Generate assessment progress tracking report and email it to AOs	Daily	DBO
1.3	Perform data cleaning based on data cleaning plan and generate cleaned dataset with cleaning log	Daily	DBO
1.4	Perform additional spot checks and flag additional potential checks to AO to update data cleaning plan	Daily (at least in the early stages)	DBO, AO and JAO, Focal Point
2. Prog	ress Tracking		
2.1	Compare progress tracker with data collection plan	Daily	AO and JAO,
2.2	Consult with Field team on progress updates/delays/challenges	Upon need	Focal Point
2.3	Review progress tracker for enumerator productivity and deleted interviews and give feedback to the field officers – function included in Data Progress Tracker for SFOs to review themselves.	Upon need	AO and JAO,
3. Clear	ning REACH data and report back to field teams		
3.1	Review cleaned dataset, identify potential errors, update data cleaning plan if the errors are new and report the updates back to the DBO	Daily (at least in the early stages)	DBO, AO and JAO, Focal Point
3.2	Upload cleaning log on Google spreadsheet, seeking feedback from SFOs	Daily	AO and JAO,
3.3	Review cleaning log and approve changes that need to be made to the flagged cells (e.g. if an outlier needs to be changed to NA).	Weekly	AO and JAO, DBO
3.4	Review the cleaning log and report persistent errors back to the field teams (individually or through the skype group if errors committed by multiple teams)	Daily (at least in the early stages)	AO and JAO, Focal Point
3.5	Consult field teams about uncommon errors and/or understanding common errors (e.g. non-extreme outliers)	After first week of DC (upon need afterwards)	DBO, AO and JAO, Focal Point

4. Clean	I. Cleaning Partner data and Progress Monitoring									
4.1	Compare progress tracker with Partner data collection plan	Every 2 nd day	AO and JAO,							
4.2	Consult with Partners on progress updates/delays/challenges	Upon need	AO and JAO,							
4.3	Review partner data, identify potential errors	Daily (esp in the beginning)	DBO, AO and JAO, Focal Point							
4.4	Provide cleaning log to partners through Google Spreadsheet on errors, and seek feedback and/or corrections	Daily	AO and JAO							
4.5	Integrate feedback/corrections to partner data	Daily	AO and JAO, DBO							

For more resources on data cleaning, please refer to REACH Minimum Standard Checklist on Data Cleaning.

ANNEX 4: MODIFICATION TO THE CORE INDICATOR

Indic ator num ber	Indicator	Question	Please explain what modifications were made?	Justification for the change?	Change made in consultation with IMPACT CSU? If yes, who was consulted?
182	% of HH without any shelter or living in inadequate shelter	What type of shelter does the household live in?	We have multiple questions which capture this data, but are unable to adopt the HQ format	Our shelter questions have been agreed-upon with the cluster, rephrasing would go against general agreement with HCT.	Yes, clarified issues to Camilla Wuensch who consented to the change
186	% of HHs living in a functional domestic space	What issues, if any, do members of your household face in terms of living conditions inside your shelter?	Omitted, data can be extracted from other questions in SNFI indicators	Large addition, burden on the tool	Yes, clarified issues to Camilla Wuensch who consented to the omission and noted that data for this indicator can be pulled from other indicators

49	% of settlements by access to mobile network category	Does at least one member of your household have network coverage to use the mobile phone most days? For example in your home, work, school, or other place where you spend a lot of time.	This indicator was not included	It was suggested as a durable solutions indicator but was not deemed contextually useful in the context of the IRQ, given the high degree of phone ownership and access to networks/reception.	Yes, discussed with Lukasz Kruk who consented to the omission
216b	% of individuals with an unmet health care need	What was the health care need?	Indicator not at household-level, not individual-level	Tool too long for additional indvlevel questions. Data is nonetheless collected at household-level but asked in integer for the number of individuals with unmet health needs, rather than indvlevel	Yes, discussed with Saeed Rahman who advised against change to hhlevel collection for technical reasons. The change nonetheless had to be adopted for non-technical reasons (to lessen burden on tool length).
1	% of school-aged children enrolled in school for the 2021-2022 school year.	Was [this person] (6-17) enrolled/registered in a formal learning environment for the 2021-2022 school year?	"formal learning environment" instead of school (to distinguish between formal/nonformal as per Ed. Cluster wishes), age brackets (6-17 as in 2021) and individual-level instead of age/gender brackets	To be kept in-line with 2021 MCNA in Iraq as per HCT agreement	Yes, Marie-Amandine Grand checked the questions and confirmed they are adequate

ANNEX 5: DISSEMINATION PLAN

#	Products	Message	Stakeholders	Means of dissemination	Purpose	Responsible	Timeframe
Iraq Multi-Cluster Needs Assessment X – May 2022							
Program goal: Deliver up-to-date information for humanitarian actors on the severity of humanitarian conditions of crisis-affected Iraqi populations in selected districts with the aim of contributing to a more targeted and							
evidence-based humanitarian response.							
-	Final MCNA Assessment Report	Provide an overview of the context in Iraq Provide information about the methodology and objective of the assessment Provide a comprehensive overview of the sectoral and cross-sectoral needs by geographic area and by population groups	Humanitarian clusters Iraq humanitarian community Regional and central government agencies	AIM WG mailing list REACH Iraq mailing list REACH Resource Center Reliefweb	Inform the humanitarian community and influence the response	MCNA Focal Point	By 10/11/2022
2.	Multi-sector Preliminary Findings Presentation	Key sectoral and cross-sectoral findings from the MCNA X	Assessment Working Group (AWG) Iraq humanitarian community OCHA HCT	Joint-Intersectoral Analysis Workshop REACH Resource Center	Provide preliminary findings to inform the 2023 HNO and to allow clusters to draft their inputs	MCNA Focal Point	By 20/09/2022
.3	Sectoral presentations	Severity of sectoral and cross-sectoral needs Level of access to basic services Sectoral severity of needs by population group and district	Humanitarian clusters Cluster partners	Presentation of findings at cluster meetings Cluster mailing lists	Validate and establish consensus around main findings and conclusions	MCNA Focal Point	By 31/10/2022
4.	MCNA Dashboard	Distribution of needs across population groups and districts	Iraq humanitarian community Humanitarian clusters	REACH mailing lists AIM WG mailing lists Cluster mailing lists	Allow actors to engage with the MCNA data in a way that makes the distribution of sectoral and cross-sectoral needs across population groups and districts more easily visible	Database officer	By 10/09/2022
	MCNA Factsheet	Severity of needs by sector Distribution of needs across different sectors, population groups and districts	Iraq humanitarian community Humanitarian clusters	REACH Resource Center Cluster mailing lists OCHA mailing lists Reliefweb	Inform the humanitarian community about the severity of needs in different sectors, population groups and geographic areas	MCNA Focal Point	By 30/11/2022