Integrated Needs Tracking (INT) County Profile - Abiemnhom County

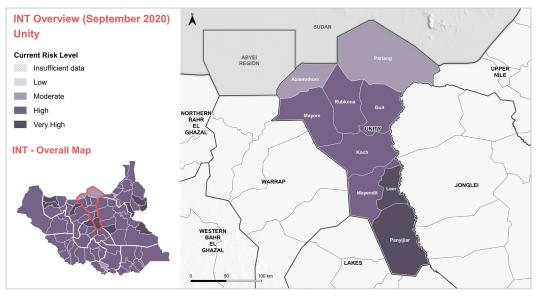
Unity State - South Sudan - September 2020

September 2020 INT Risk:	Moderate	3	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Moderate

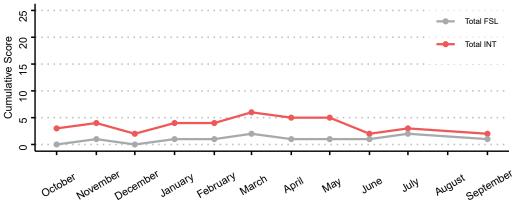
23

Department

Development

for International

Tealth: (August data)


No Data

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	14%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	27%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was ${\rm reported}^{(\prime)}$	91%	Very High
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	0,0		Forecasted annual change in crop production from 5 year average ⁽⁸⁾	+119%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+4%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-12%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Akobo County

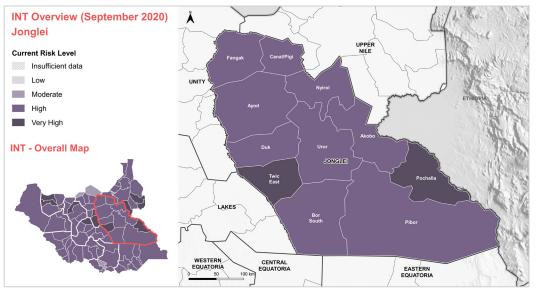
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

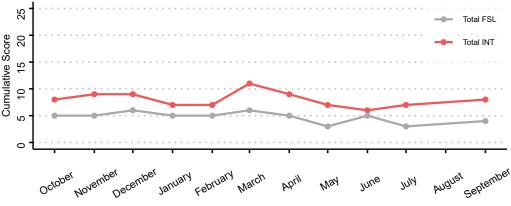
ods:	Moderate
ne:	Very High

13

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	1%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	41%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	67%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	82%	Very High
Assessed settlements where residents reportedly coped	2%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	270	Low	Forecasted annual change in crop production from 5 year average [®]	-12%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	4%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+6%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+21%	High
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

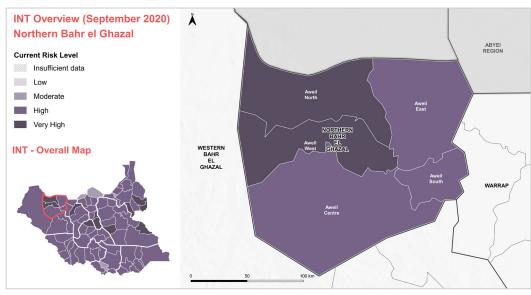
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Aweil Centre County

Northern Bahr el Ghazal State - South Sudan - September 2020

Source: IPC - Integrated Food Security Phase Classification

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

23

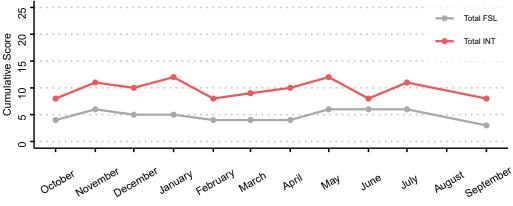
Department

for International

Development

Tealth: (August data)

Verv High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	29%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	3%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	7%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\mbox{\tiny (7)}}$	32%	Moderate
reported ⁽¹⁾	00/		Assessed settlements where selling livestock to cope	44%	Moderate
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	9%	Low	with a lack of food was reported ⁽⁷⁾		
Assessed settlements where residents reportedly coped	41%	Very High	Agriculture		
with a lack of food by only having children \mathbf{eat}^η			Forecasted annual change in crop production from 5 year average [®]	+21%	High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	25%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+4%	Low
Change in white sorghum prices ${\rm compared}$ to the average across the previous three ${\rm months}^{m}$	+11%	Moderate	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-3%	Low
Change in field bean prices compared to the average	+25%	Very High			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Aweil East County

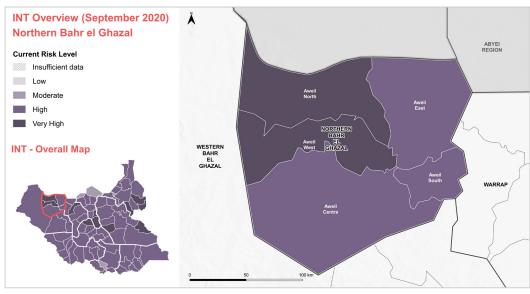
Northern Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

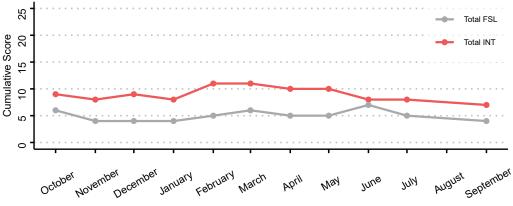
Moderate
Very High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	37%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	4%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	51%	High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	6%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	73%	Very High
Assessed settlements where residents reportedly coped	49%	Very High	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	1070	tory mgn	Forecasted annual change in crop production from 5 year average [®]	-30%	Moderate
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	33%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+5%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	-9%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-16%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	+10%	Moderate			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Aweil North County

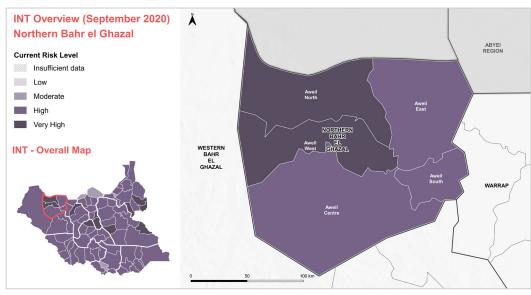
Northern Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	Very High	3	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food Security & Livelihoods:	Very High
--	------------------------------	-----------

Water Sanitation & hygiene:

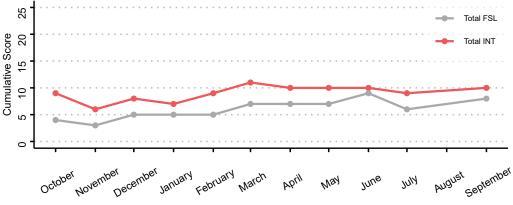
Verv High

Department

for International

Development

23


Tealth: (August data) High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	45%	High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	68%	Very High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime \eta}$	87%	Very High
Assessed settlements where residents reportedly coped	48%	Very High	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	10,0	iory nigh	Forecasted annual change in crop production from 5 year average [®]	-15%	High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	41%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+7%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\!(\!\eta\!)}$	+23%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-18%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime \eta}$	+33%	Very High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Aweil South County

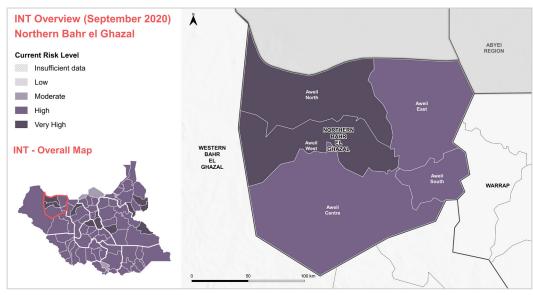
Northern Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	High	2	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

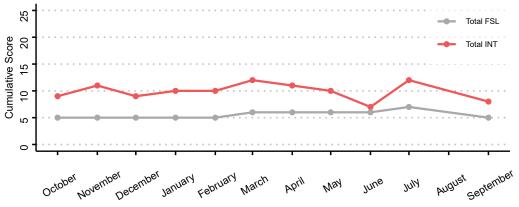
23

Department

for International

Development

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	55%	High	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	55%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	3%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	90%	Very High
Assessed settlements where residents reportedly coped	69%	Very High	Agriculture		
with a lack of food by only having children eat	0070		Forecasted annual change in crop production from 5 year average ^(®)	-7%	Moderate
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	45%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+5%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	+1%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁰⁾	-4%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Aweil West County

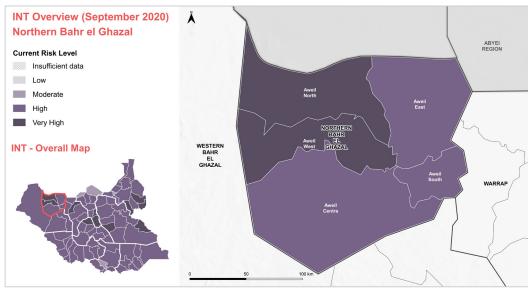
Northern Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	Very High	Y	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
- Water Sanitation & hygiene:
- Verv High

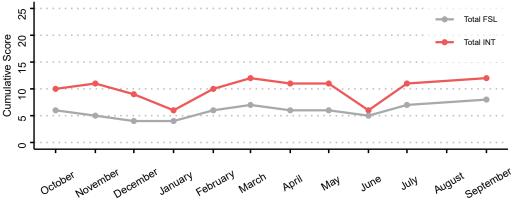
High

23

Department

Development

for International


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be $^{\prime\prime\prime}$	46%	High	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	6%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	46%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	4%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported"	79%	Very High
Assessed settlements where residents reportedly coped	50%	Very High	Agriculture		
with a lack of food by only having children eat ⁽¹⁾			Forecasted annual change in crop production from 5 year average ^(®)	-17%	High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	40%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+6%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\!(\!\eta\!)}$	+33%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-10%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime \eta}$	+33%	Very High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Awerial County

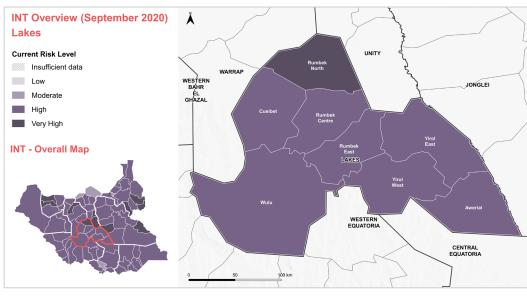
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	IPC FSL May - July 2020 Projection:	4	, C	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
- Water Sanitation & hygiene:
- Verv High

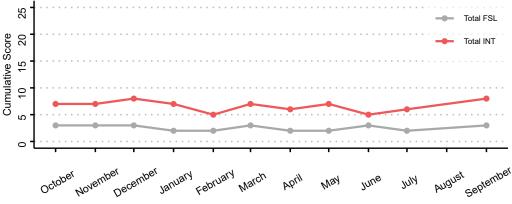
Low

23

Department

Development

for International


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	14%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\!\eta\!)}$	3%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\prime\prime\prime}$	48%	High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	17%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was $\mbox{reported}^{(\prime)}$	21%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ^{η}	0,0		Forecasted annual change in crop production from 5 year average ^(®)	-18%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	7%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	46%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	3%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	+16%	High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁹⁾	+5%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	+8%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Ayod County

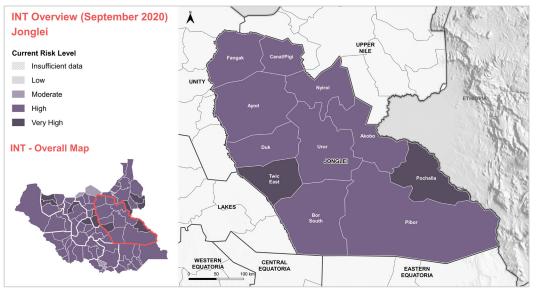
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	Ś	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High		IPC January 2020 FSL:	4		IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

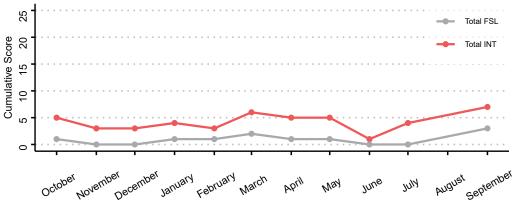
ds:	Moderate
ie:	Very High

13

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	2%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	95%	Very High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	23%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	32%	Moderate
Assessed settlements where residents reportedly coped	86%	Very High	Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average ⁽⁹⁾	+47%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	39%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	11%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-1%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Baliet County

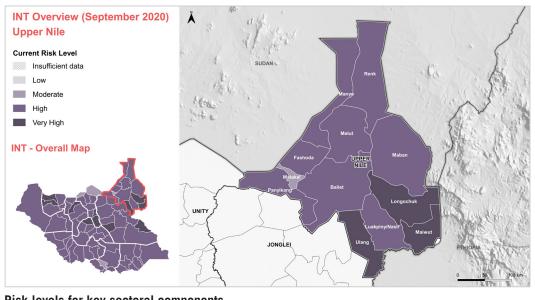
UpperNile State - South Sudan - September 2020

September 2020 INT Risk:	High	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

 Wator	Sanitation	9.	hygiono
VV alCI	Samuation	×	IIVEICIIC

Low Verv High

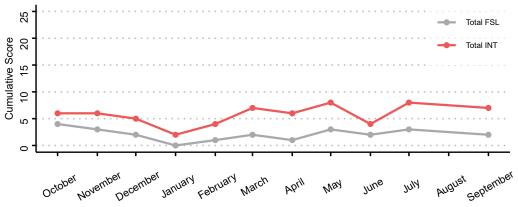
13

Department

Development

for International

- Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	7%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(7)}$	14%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	21%	High	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	36%	Moderate
	70/	1 mm	Assessed settlements where selling livestock to cope	7%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	7%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat $^{\!(\eta)}$			Forecasted annual change in crop production from 5 year average [®]	+20%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	17%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	50%	High	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-1%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Bor South County

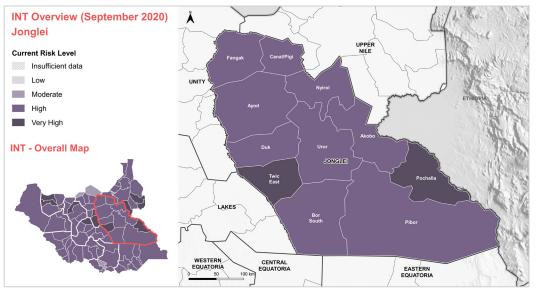
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	9	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

🛫 Wator Conitation 9 hygion	
	.
🍋 Water Sanitation & hygiend	

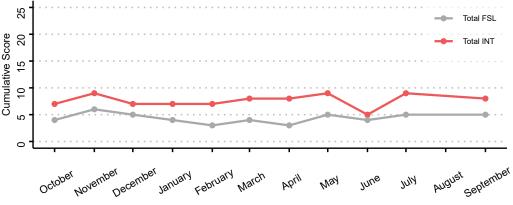
6:	Moderate
:	Very High

13

Department

for International

Development


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	46%	High
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	50%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	20%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was $reported^{(\prime)}$	38%	Moderate
Assessed settlements where residents reportedly coped	40%	Very High	Agriculture		
with a lack of food by only having children eat	1070	,	Forecasted annual change in crop production from 5 year average ⁽⁶⁾	+222%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	28%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	71%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+6%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+15%	Moderate
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Budi County

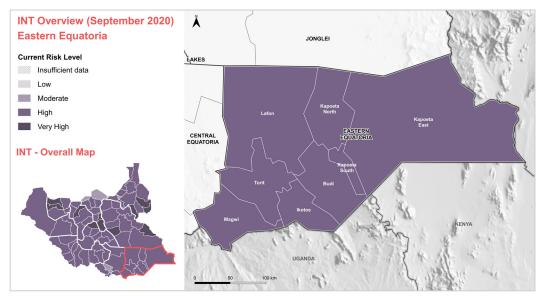
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

13

Department

Development

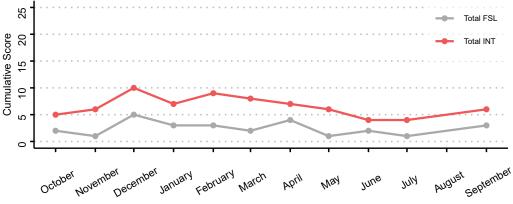
for International

Risk levels for key sectoral components

Q	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

-	Mator	Conitation	0	hugiono.	
	water	Sanitation	ĸ	ilygiene:	

Moderate	藔 Healt
Very High	


Dealth: (August data) High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score	
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	21%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low	
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	43%	High	
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an	29%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽⁷⁾	79%	Very High	
unsustainable food source ⁽⁷⁾			Agriculture			
Assessed settlements where residents reportedly coped	0%	Low	•			
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average [®]	+76%	Low	
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	79%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	7%	Low	
Markets			Climate			
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	7%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+10%	Low	
Change in white sorghum prices compared to the average across the previous three months $^{\prime \prime \prime }$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+7%	Low	
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data				

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

-

Integrated Needs Tracking (INT) County Profile - Canal\Pigi County

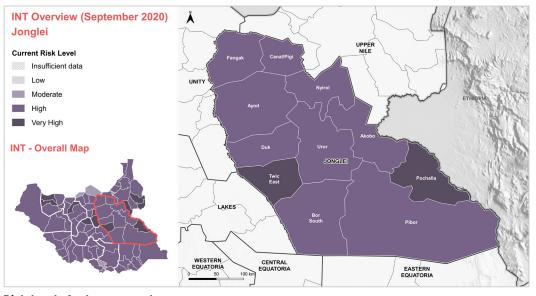
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	9	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food	Security	&	Livelihoods:	

 Mator	Conitation	0	hugiono.
water	Sanitation	ĸ	inygrene:

Very High

Low

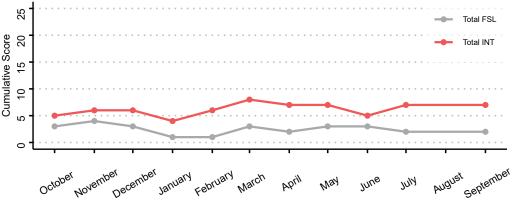
1.3

Department

Development

for International

```
Tealth: (August data)
           Verv High
```


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽ⁱ⁾	13%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	8%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	4%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	42%	High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	8%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽⁷⁾		
Assessed settlements where residents reportedly coped	8%	Low	Agriculture		
with a lack of food by only having children $eat^{\prime\eta}$			Forecasted annual change in crop production from 5 year average [®]	+13%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	7%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	79%	Very High	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three $\text{months}^{\textit{o}}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+7%	Low
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Cueibet County

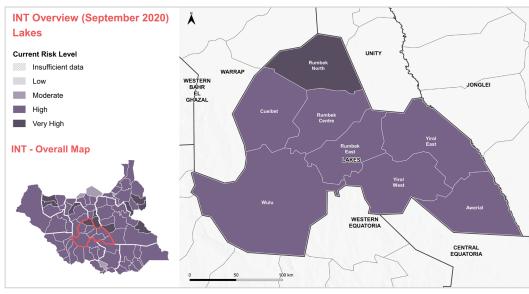
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

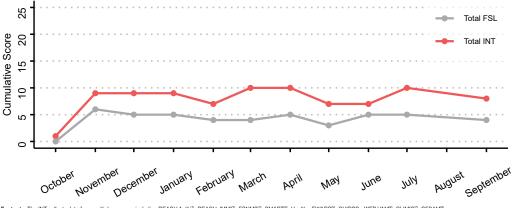
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	21%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	29%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	4%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	42%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	33%	Moderate
Assessed settlements where residents reportedly coped	29%	High	Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average [®]	+21%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	21%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	25%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-6%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	-18%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Duk County

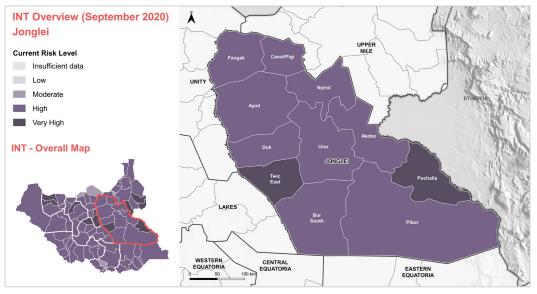
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	5	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

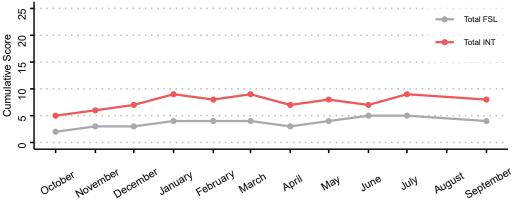
ds:	Moderate
ie:	Very High

13

Department

for International

Development


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	11%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\prime\prime\prime}$	26%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	47%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m			Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	68%	High
Assessed settlements where residents reportedly coped	58%	Very High	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	00,0		Forecasted annual change in crop production from 5 year average ^(®)	+8%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	5%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	65%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+1%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁰⁾	-2%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

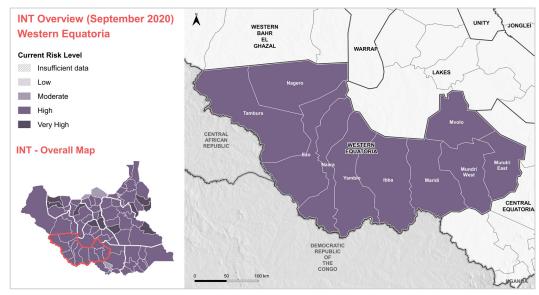
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Ezo County

Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	2	IPC FSL May - July 2020 Projection:	2	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High		IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water	Sanitation	۶.	hvoiene
mator	Janitation	ч.	mygrone.

Verv High

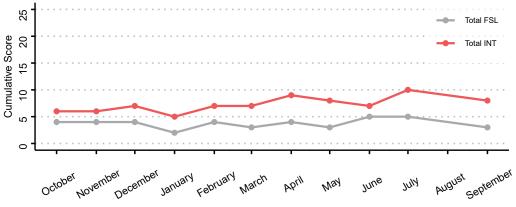
Low

23

Department

Development

for International


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\mbox{\tiny (7)}}$	89%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	17%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	070	Low	Forecasted annual change in crop production from 5 year average [®]	+8%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	20%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+8%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	+29%	Very High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Fangak County

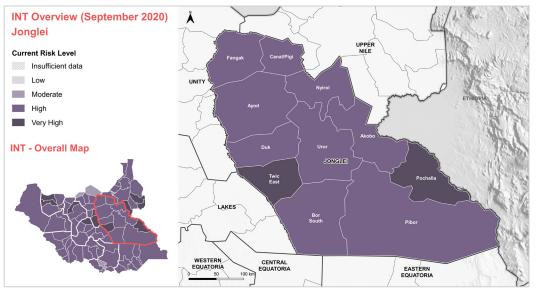
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	Se la construcción de la constru	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

Δ

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

ods:	Moderate
ne:	Very High

13

Department

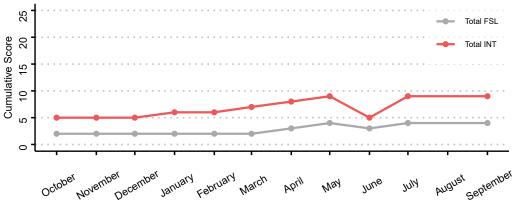
Development

for International

Tealth: (August data)

Verv High

ad Availability 9 Accord


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can $\mbox{be}^{\prime\prime\prime}$	28%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	40%	Very High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	97%	Very High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	3%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	92%	Very High
Assessed settlements where residents reportedly coped	18%	Moderate	Agriculture		
with a lack of food by only having children eat ⁽¹⁾			Forecasted annual change in crop production from 5 year average ^(#)	-5%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	5%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	35%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	3%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\!(\!\eta\!)}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-2%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime \! 7}$	No Data	No Data			

Livesteel

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Fashoda County

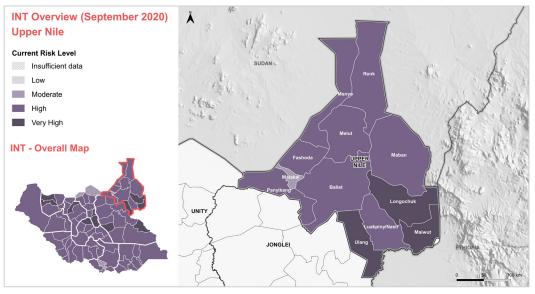
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:
--	------	----------	---	--------------

Water Sanitation & hygiene:

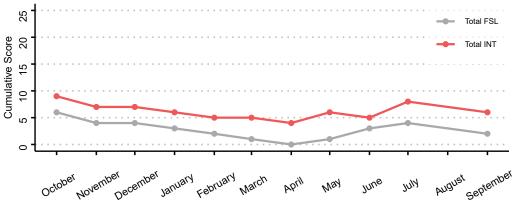
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	5%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	51%	High
Assessed settlements where the consumption of wild foods that are known to make people sick was	5%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	34%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	68%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	17%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	0,0	2011	Forecasted annual change in crop production from 5 year average ^(®)	+40%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+8%	Low
Change in white sorghum prices $compared$ to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+0%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Gogrial East County

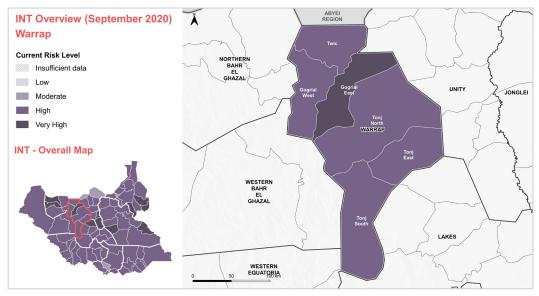
Warrap State - South Sudan - September 2020

September 2020 INT Risk:	Very High	3	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	, C	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

-	Water	Sanitation	8.	hygiono
	walei	Samualium	ĸ	inygrene:

Very High Very High

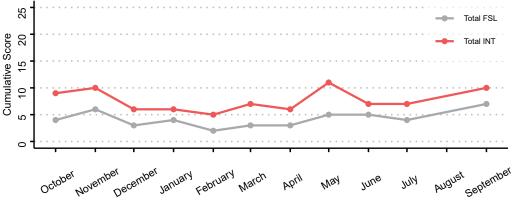
23

Department

Development

for International

🐡 Health: (August data) High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	14%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	8%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	59%	Very High	Assessed settlements where the presence of livestock diseases was reported $^{\mbox{\tiny (7)}}$	84%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	73%	Very High
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	78%	Very High	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	3%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	0,0	2011	Forecasted annual change in crop production from 5 year average [®]	-12%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without $eating^{\prime\prime}$	84%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	59%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	22%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms®	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \prime }$	+22%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-9%	Low
Change in field bean prices compared to the average	+11%	Moderate			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Gogrial West County

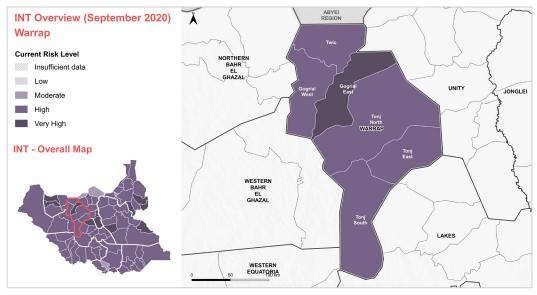
Warrap State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

- Water Sanitation & hygiene:
- High Verv High

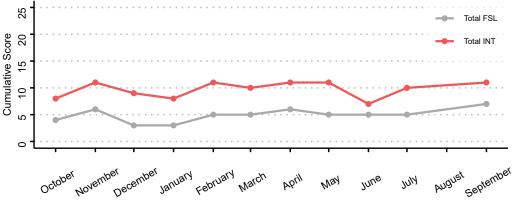
23

Department

Development

for International

Tealth: (August data)


High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	76%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	3%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	33%	Very High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	66%	Very High
reported ⁽¹⁾ Assessed settlements where residents reportedly use an	24%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽⁷⁾	97%	Very High
unsustainable food source ⁽⁷⁾ Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁿ	0 78	LOW	Forecasted annual change in crop production from 5 year average [®]	-6%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	24%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	53%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+1%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	+52%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-6%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime \eta}$	+3%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Guit County

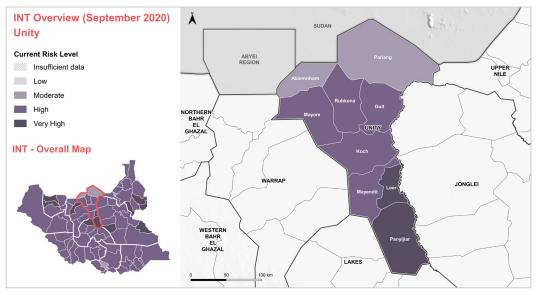
Unity State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

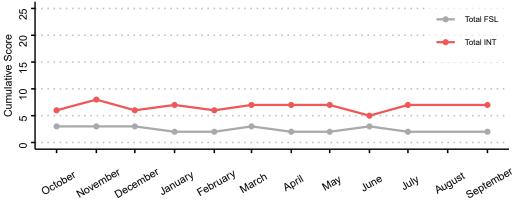
23

Department

Development

for International

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Feed Availability 0. Access			Liverteels		
Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	3%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	1%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	74%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	3%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	97%	Very High	with a lack of food was reported ⁽¹⁾		
Assessed a Million of the second state and the second state of the	0%	1	Agriculture		
Assessed settlements where residents reportedly coped with a lack of food by only having children eat ⁽⁷⁾	0%	Low	Forecasted annual change in crop production from 5 year average®	+158%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	12%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+0%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-12%	Moderate
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Ibba County

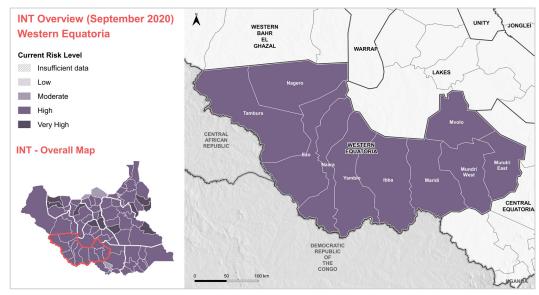
Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	2	Ç	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water	Sanitation	۶.	hvoiene
mator	Janitation	ч.	mygrone.

Verv High

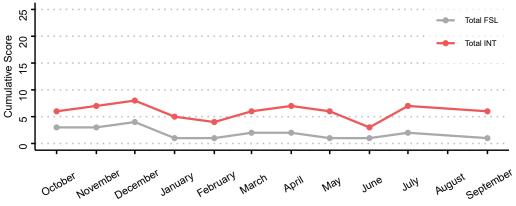
Low

23

Department

Development

for International


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	5%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	10%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	0%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	10%	Low	with a lack of food was reported ⁽¹⁾		
······	00/		Agriculture		
Assessed settlements where residents reportedly coped with a lack of food by only having children eat ⁽¹⁾	0%	Low	Forecasted annual change in crop production from 5 year average®	-5%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽¹⁾	5%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+13%	Moderate
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	+12%	Moderate			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Ikotos County

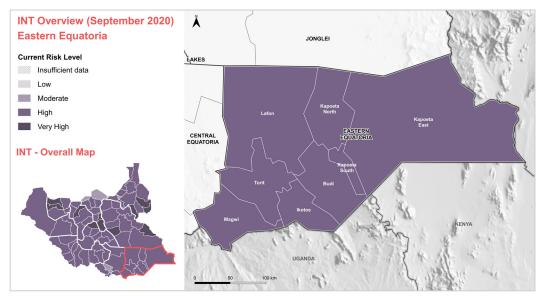
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	N.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High		IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

-	Motor	Conitation	0	hygiono
	water	Sanitation	ĸ	IIVEICIIC

ods:	Moderate
ene:	Very High

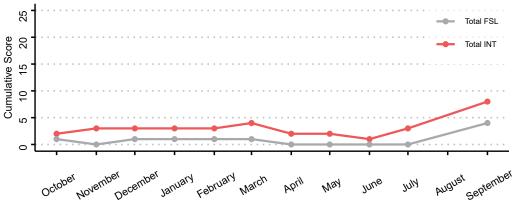
13

Department

for International

Development

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	40%	High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	20%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	27%	High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	20%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	7%	Low
Assessed settlements where residents reportedly coped	20%	High	Agriculture		
with a lack of food by only having children eat	2070		Forecasted annual change in crop production from 5 year average ⁽⁶⁾	+6%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	33%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+5%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+7%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	+1%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Juba County

Central Equatoria State - South Sudan - September 2020

96%

n%

n%

-31%

74%

+4%

+6%

Severity Score

Very High

Inw

Inw

Inw

Verv Hig

Inw

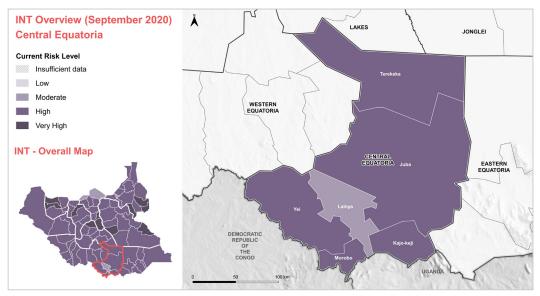
Inw

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

🖌 Water Sanitation & hygiene:			
	Water Sa	nitation &	hygiene:

s:	Moderate	
e:	Very High	

13

Department

for International

Development

Tealth: (August data) Verv High

unsustainable food source Assessed astillars and unless assidents reportedly, essed

severe or the worst it can be

reported⁽¹

Food Availability & Access

Assessed settlements where reported hunger was

Assessed settlements where the consumption of

wild foods that are known to make people sick was

Assessed settlements where residents reportedly use an

Food Security & Livelihoods (FSL) indicators

with a lack of food by only having children eat ⁽⁷⁾	43%	very High	Forecasted annual change in crop production from 5 year average®
Assessed settlements where residents reportedly coped with a lack of food by going days without eating (*)	22%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽¹⁾
Markets			Climate
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	4%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾
Change in white sorghum prices compared to the average across the previous three months $^{\prime \! \prime \! \prime }$	+4%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	+8%	Low	

Severity Score

Very High

Very High

Low

65%

39%

9%

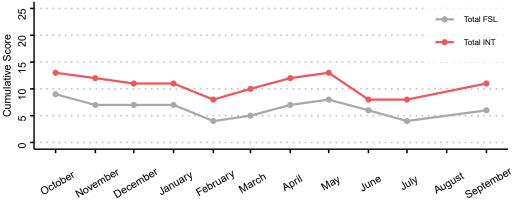
Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Livestock

Assessed settlements where residents reportedly do

Assessed settlements where selling livestock to cope


not possess or have access to livestock⁽¹⁾

livestock diseases was reported

with a lack of food was reported

Agriculture

Assessed settlements where the presence of

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

2

Integrated Needs Tracking (INT) County Profile - Jur River County

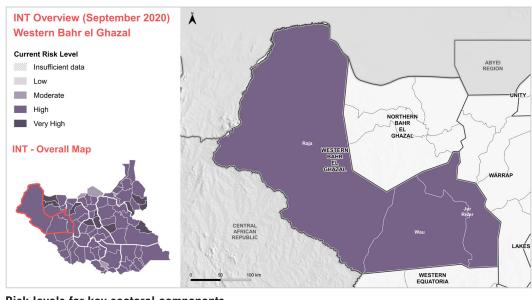
Western Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	3	Ç	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
-		ooounty	~	Entonnoodor	

Water	Sanitation	&	hygiene:

Verv High

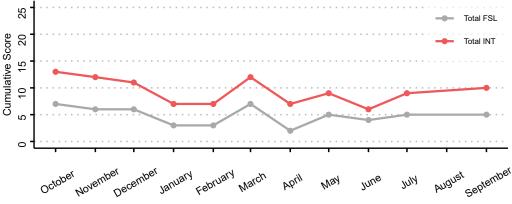
Low

23

Department

for International

Development


Tealth: (August data) Verv High Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	28%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	26%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	50%	Very High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	19%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	12%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	12%	Low	with a lack of food was reported ^(*)		
Assessed settlements where residents reportedly coped	35%	High	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	0070		Forecasted annual change in crop production from 5 year average [®]	-83%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	23%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	26%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	7%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	+20%	High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+2%	Low
Change in field bean prices compared to the average	+6%	Low			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Kajo-keji County

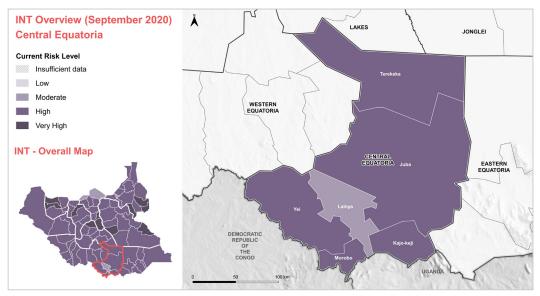
Central Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

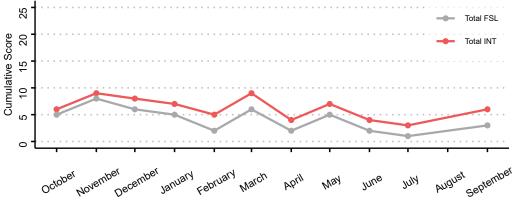
Department

Development

for International

23

🐡 Health: (August data) High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	21%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	84%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	18%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	11%	Low
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	16%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was $\mbox{reported}^{\prime\prime}$	32%	Moderate
Assessed settlements where residents reportedly coped	32%	High	Agriculture		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average ⁽⁸⁾	+44%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ¹⁷	11%	Moderate	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\!(\eta)}$	61%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	21%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \prime }$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+4%	Low
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Kapoeta East County

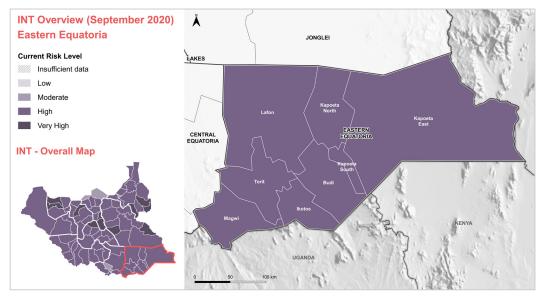
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
~		,			

	Mahaw	Contration	0	humine.
ч.	water	Sanitation	Č,	nygiene

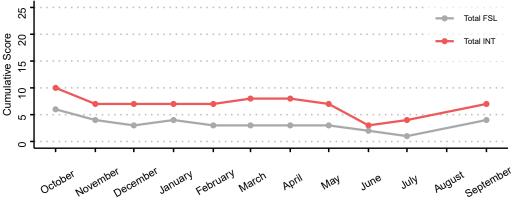
Moderate Verv High le:

13

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	72%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	13%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	51%	High
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	ortedly use an 19% Moderate with a lack of food was reported		with a lack of food was reported ⁽⁷⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average [®]	+13%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	32%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	8%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+25%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+29%	High
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Kapoeta North County

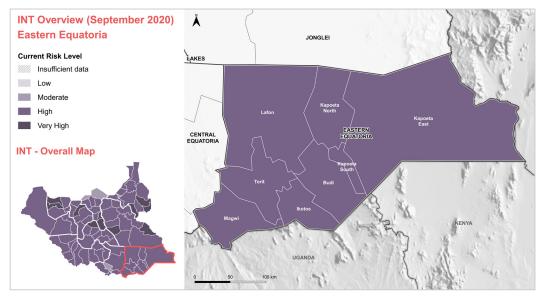
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	S.	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

🖌 Water Sanitation & hygiene	5	Water	Sanitation	&	hygiene
------------------------------	---	-------	------------	---	---------

S:	Moderate						
:	Very High						

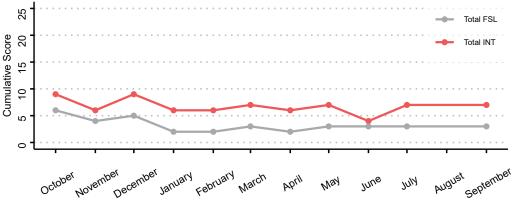
13

Department

for International

Development

Health: (August data) Verv High



Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	96%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the $\mbox{presence of}$ livestock diseases was reported $\mbox{\sc n}$	0%	Low
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	61%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	39%	Moderate
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁿ	070	Low	Forecasted annual change in crop production from 5 year average [®]	+46%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+16%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+25%	High
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Kapoeta South County

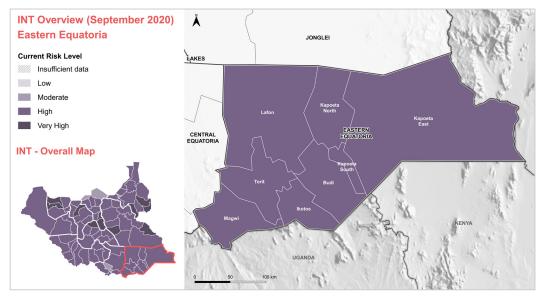
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High		IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

wouciate	
Verv High	

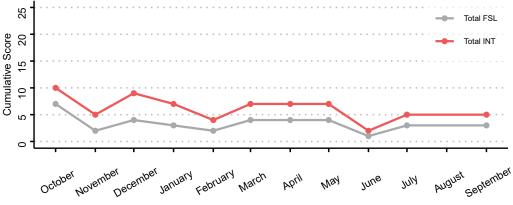
Department

for International

Development

Modorato

1.3


Health: (August data) High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	57%	High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	7%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	29%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	21%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	79%	Very High
Assessed settlements where residents reportedly coped	14%	Moderate	Agriculture		
with a lack of food by only having children eat	1170	moderate	Forecasted annual change in crop production from 5 year average ⁽⁹⁾	-46%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	57%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	17%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+22%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+3%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Koch County

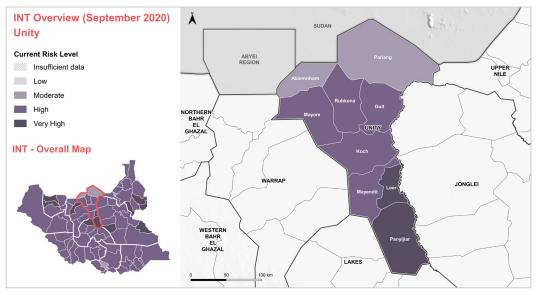
Unity State - South Sudan - September 2020

September 2020 INT Risk:	High		IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

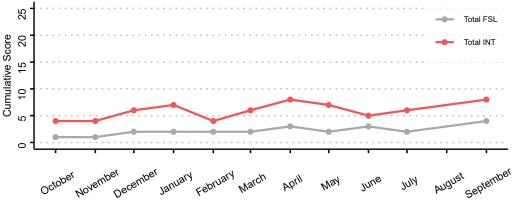
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	47%	High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	7%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	67%	Very High
reported ⁽⁷⁾			Assessed settlements where selling livestock to cope	3%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	53%	Very High	with a lack of food was reported ^(*)		
Assessed settlements where residents reportedly coped	3%	Low	Agriculture		
with a lack of food by only having children eat	0,0		Forecasted annual change in crop production from 5 year average [®]	+6%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	23%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	12%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ^(®)	-10%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Lafon County

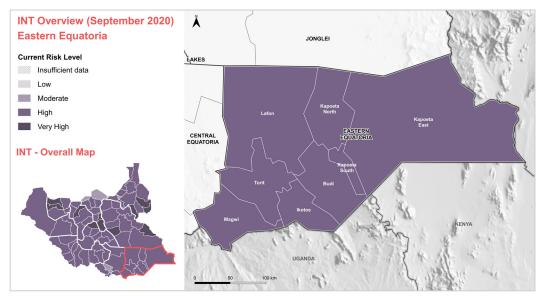
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

L. 1	Mator	Sanitation	0	hygiono.
	vvalei	Samualium	ĸ	IIVEICIIC:

:	Moderate
	Very High

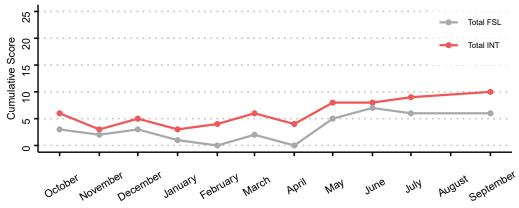
13

Department

for International

Development

Health: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	50%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	25%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	ds that are known to make people sick was livestock diseases was		Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	38%	Moderate
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	13%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported^{η}	38%	Moderate
Assessed settlements where residents reportedly coped	63%	Very High	Agriculture		
with a lack of food by only having children \mathbf{eat}^η			Forecasted annual change in crop production from 5 year average [®]	+6%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ^{rg}	25%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	54%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	38%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms®	+9%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	-55%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+23%	High
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	-9%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Lainya County

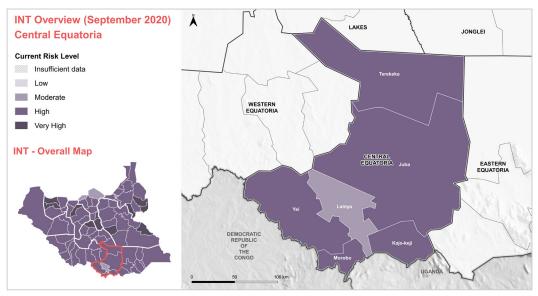
Central Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	Moderate	۵	IPC FSL May - July 2020 Projection:	3	O	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food Security & Livelihoods:

Water Sanitation & hygiene:

Moderate

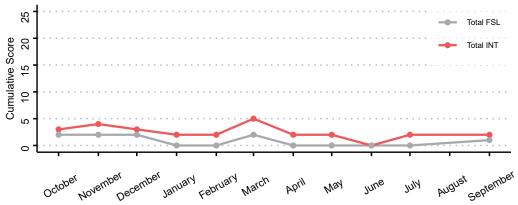
1.3

Department

Development

for International

Low


Health: (August data) High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	No Data	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	0%	No Data
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	0%	No Data
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	No Data	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	No Data
Assessed settlements where residents reportedly coped	0%	No Data	Agriculture		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average [®]	-61%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	No Data	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0	No Data
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	No Data	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+4%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime\prime}$	+0.06	Low	Ratio between rainfall for the current year and the average in percentage terms ^(®)	+14%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\!(\!$	+17%	High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Leer County

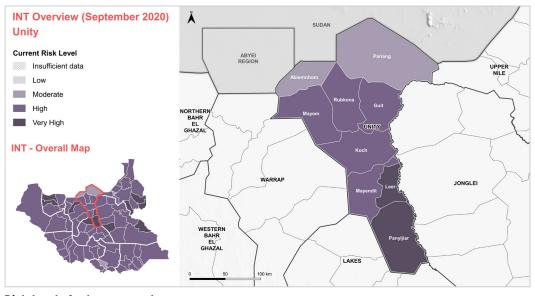
Unity State - South Sudan - September 2020

September 2020 INT Risk:	Very High	J.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
- Water Sanitation & hygiene:
- Verv High

High

1.3

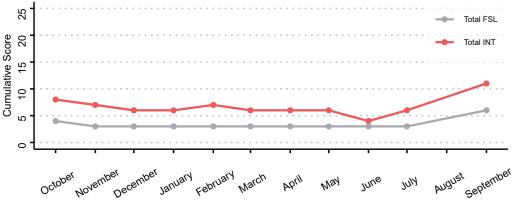
Department

Development

for International

- Tealth: (August data)

Verv High



Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	33%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽¹⁾	67%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	40%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	33%	High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\!(\prime)}$	13%	Low
Assessed settlements where residents reportedly coped	47%	Verv High	Agriculture		
with a lack of food by only having children eat $^{\prime \eta}$,	Forecasted annual change in crop production from 5 year average®	+163%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	20%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\prime\prime}$	33%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-13%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Longochuk County

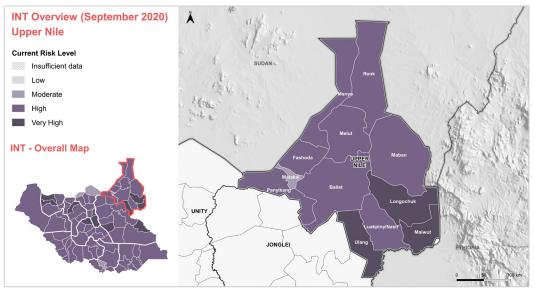
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	Very High	9	IPC FSL May - July 2020 Projection:	4	, Co	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:
--	------	----------	---	--------------

Water Sanitation & hygiene:

No Data Verv High

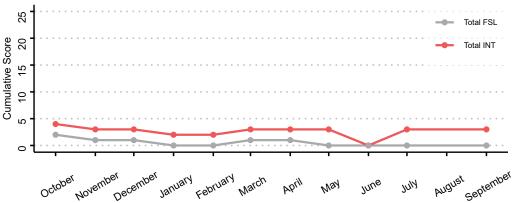
23

Department

Development

for International

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽ⁱ⁾	0%	No Data	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	No Data
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	0%	No Data
reported ⁽¹⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽¹⁾	0%	No Data	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	No Data
Assessed settlements where residents reportedly coped	0%	No Data	Agriculture		
with a lack of food by only having children eat $^{\!(\!\eta\!)}$			Forecasted annual change in crop production from 5 year average ^(®)	+63%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	No Data	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	0	No Data
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	No Data	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+6%	Low
Change in white sorghum prices compared to the average across the previous three $\text{months}^{(7)}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+5%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Luakpiny\Nasir County

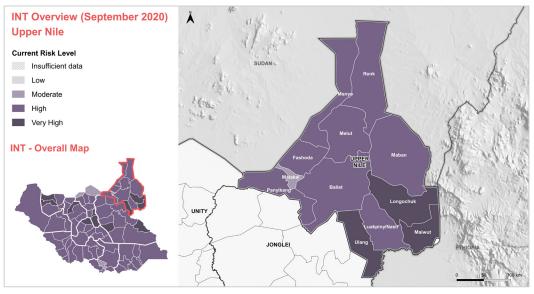
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	C	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

Δ

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:
---	------	----------	---	--------------

Water Sanitation & hygiene:

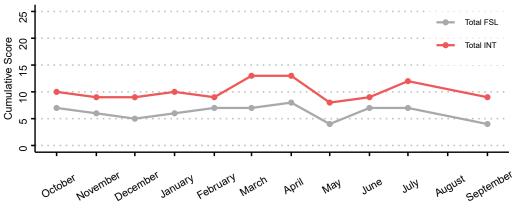
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	8%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	38%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	79%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	100%	Very High
Assessed settlements where residents reportedly coped	29%	High	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾			Forecasted annual change in crop production from 5 year average [®]	+5%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	6%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	17%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+8%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Maban County

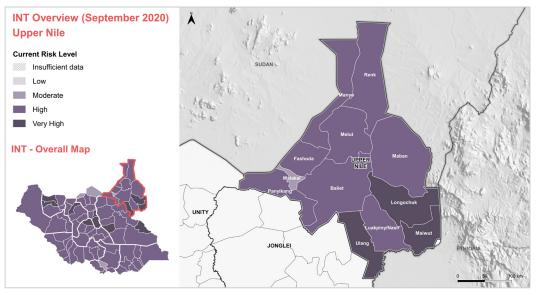
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:
---	------	----------	---	--------------

Water Sanitation & hygiene:

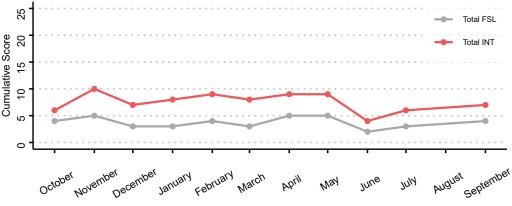
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	0%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	0%	Low
Assessed settlements where residents reportedly use an	31%	High	with a lack of food was reported ⁽¹⁾		
unsustainable food source ⁽⁷⁾			Agriculture		
Assessed settlements where residents reportedly coped	0%	Low			
with a lack of food by only having children eat $^{\prime\eta}$			Forecasted annual change in crop production from 5 year average ^(®)	-66%	Very High
Assessed settlements where residents reportedly coped with a lack of food by going days without $eating^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	26%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	15%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	-16%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-5%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

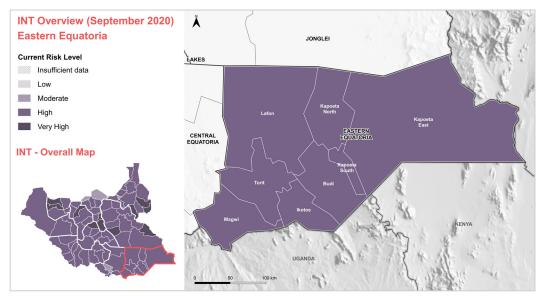
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Magwi County

Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	IPC FSL May - July 2020 Projection:	3		IPC Nutrition May - July 2020 Projection:	3
January 2020 INT Risk:	High	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:	3

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

L. 1	Mator	Sanitation	0	hygiono.
	vvalei	Samualium	~	IIVEICIIC:

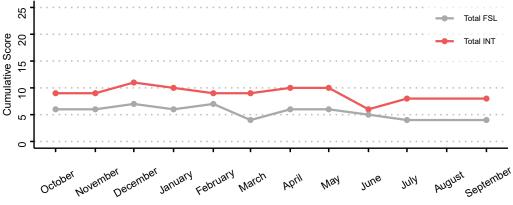
:	Moderate
	Very High

13

Department

for International

Development


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	67%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	33%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	50%	Very High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	25%	Moderate
reported ¹⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ¹⁷⁾	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	Low
Assessed settlements where residents reportedly coped	dly coped 92% Very High Agriculture		Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average [®]	+16%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without $eating^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime 9}$	72%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	-18%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+2%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	-20%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

-

Integrated Needs Tracking (INT) County Profile - Maiwut County

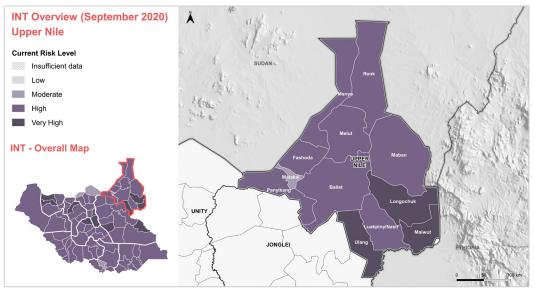
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	Very High	Y	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

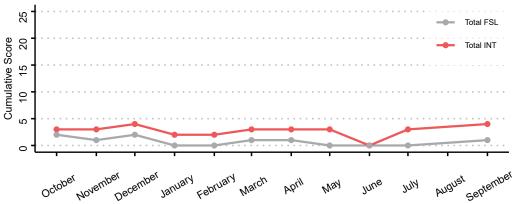
No Data Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	No Data	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(7)}$	0%	No Data
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	No Data	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	0%	No Data
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m			Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	No Data
Assessed settlements where residents reportedly coped	tedly coped 0% No Data Agriculture		Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	0,0	no butu	Forecasted annual change in crop production from 5 year average ⁽⁹⁾	-19%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	No Data	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0	No Data
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	No Data	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices $compared$ to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+31%	Very High
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Malakal County

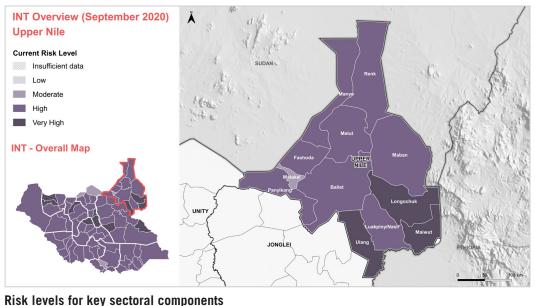
UpperNile State - South Sudan - September 2020

September 2020 INT Risk:	Moderate	3	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

1.3

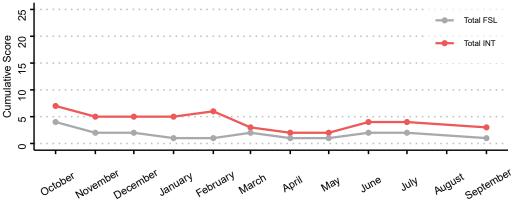
Department

Development

for International

0	Food	Security	&	Livelihoods:		Low
---	------	----------	---	--------------	--	-----

5	Water	Sanitation	&	hygiene:	High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	16%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	74%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	21%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was $\mbox{reported}^{(\prime)}$	16%	Low
Assessed settlements where residents reportedly coped with a lack of food by only having children eat?	0%	Low	Agriculture Forecasted annual change in crop production from	+38%	Low
Assessed settlements where residents reportedly coped	0%	Low	5 year average®		
with a lack of food by going days without eating $^{\prime\prime}$			Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	32%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+10%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \prime }$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+4%	Low
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

-

For more information on this factsheet please contact: REACH south.sudan@reach-initiative.org

No Data

Integrated Needs Tracking (INT) County Profile - Manyo County

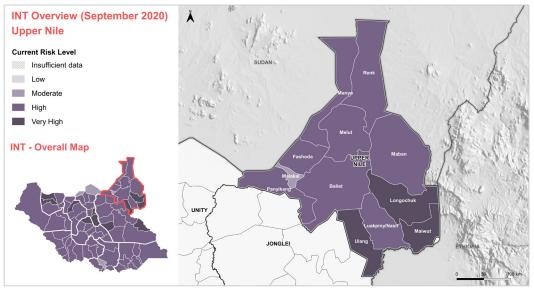
UpperNile State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

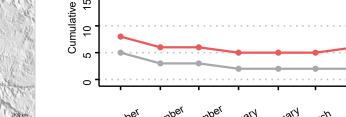
A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

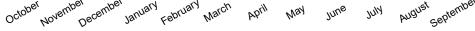
Risk levels for key sectoral components

	Food	Security	&	Livelihoods:
--	------	----------	---	--------------

Water Sanitation & hygiene:

Moderate Verv High


23


Department

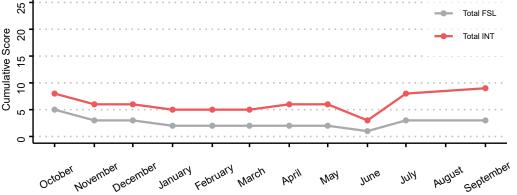
for International

Development

Tealth: (August data) Verv High

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

For more information on this factsheet please contact: REACH south.sudan@reach-initiative.org


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	13%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	33%	Very High	Assessed settlements where the presence of livestock diseases was reported $^{\mbox{\tiny (7)}}$	0%	Low
reported ⁽⁷⁾			Assessed settlements where selling livestock to cope	0%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	13%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾	0,0		Forecasted annual change in crop production from 5 year average ^(®)	+14%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	40%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	40%	High	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+10%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-7%	Low
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Integrated Needs Tracking (INT) County Profile - Maridi County

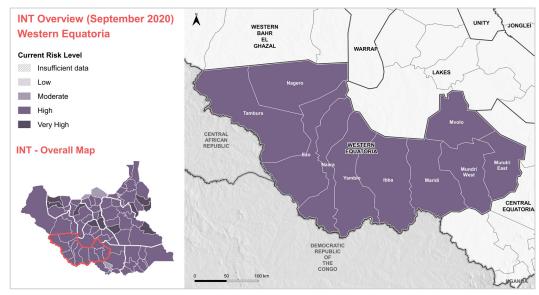
Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	2	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Low Verv High

1.3

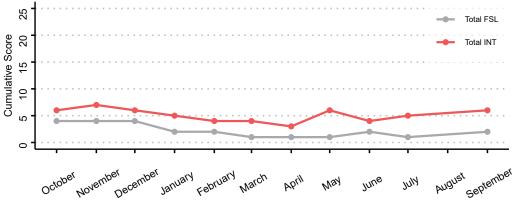
Department

Development

for International

Health: (August data)

High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\!(\!\eta\!)}$	10%	Low
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	10%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture Forecasted annual change in crop production from	-6%	Low
with a lack of food by only having children eat			5 year average®	-0 /0	LUW
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽¹⁾	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices $compared$ to the average across the previous three months $^{\prime\prime}$	+14%	Moderate	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+4%	Low
Change in field bean prices compared to the average	+21%	Very High			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Mayendit County

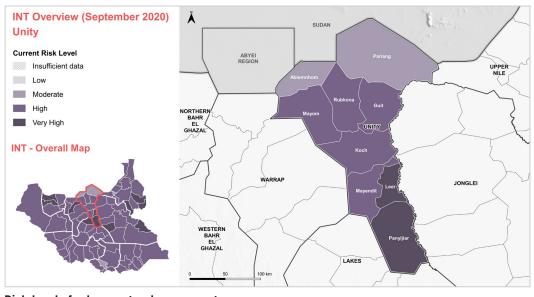
Unity State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
 - Water Sanitation & hygiene:
- **Moderate** High

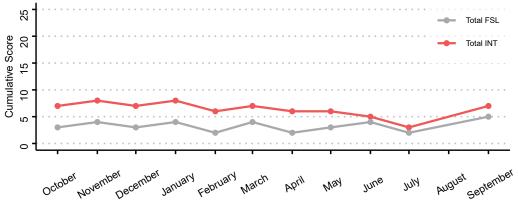
13

Department

Development

for International

No Data


Health: (August data)

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	26%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	61%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	9%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	48%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	30%	High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	30%	Moderate
Assessed settlements where residents reportedly coped	Agriculture				
with a lack of food by only having children eat		,	Forecasted annual change in crop production from 5 year average [®]	+2%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	13%	Moderate	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	36%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	-1%	Moderate
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ^(®)	-11%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Mayom County

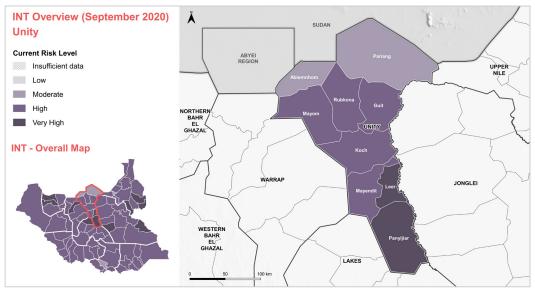
Unity State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

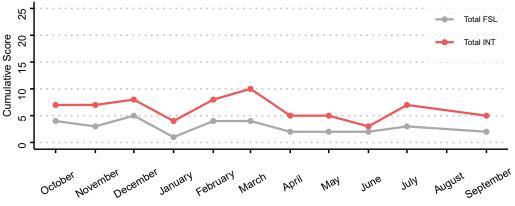
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	18%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	64%	Very High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	59%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	5%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat $^{\!(\eta)}$			Forecasted annual change in crop production from 5 year average ⁽⁸⁾	+24%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	5%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	3%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-17%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime \eta}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Melut County

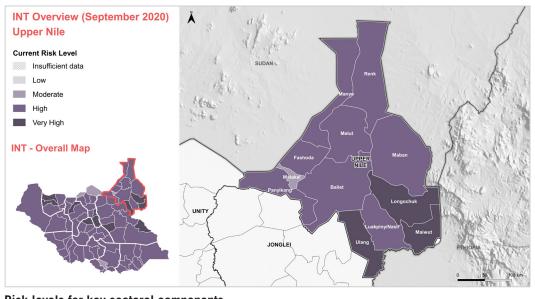
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

 Wator	Sanitation	9.	hygiono
VV alCI	Samuation	×	IIVEICIIC

Low Verv High

13

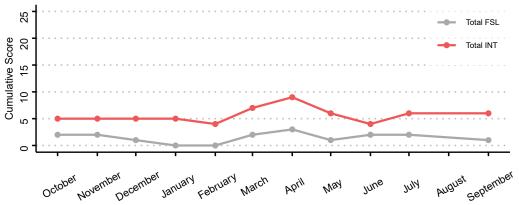
Department

Development

for International

- Tealth: (August data)

Verv High



Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	24%	High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	0%	Low
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	24%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat $^{\!(\eta)}$			Forecasted annual change in crop production from 5 year average ^(#)	-19%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	16%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	6%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-12%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Morobo County

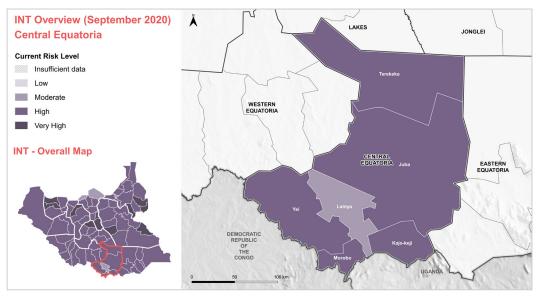
Central Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	3	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

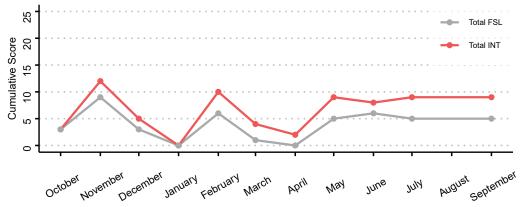
Moderate Verv High

23

Department

for International

Development


🐡 Health: (August data) High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	36%	High	Assessed settlements where residents reportedly do not possess or have access to livestock ^m	91%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	23%	High	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	27%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\!(\prime)}$	0%	Low
Assessed settlements where residents reportedly coped	27%	High	Agriculture		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average®	-66%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0.36	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+13%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Mundri East County

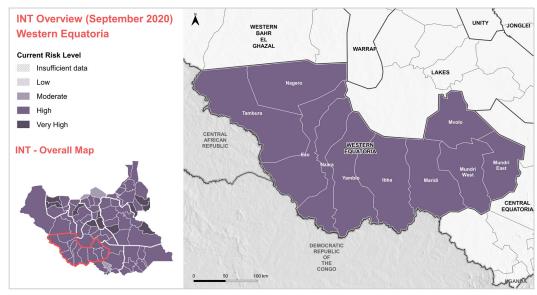
Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	2	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Ő	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

🗩 F	ood	Security	&	Livelihoods:	
-----	-----	----------	---	--------------	--

Water Sanitation & hygiene:

Low Verv High

1.3

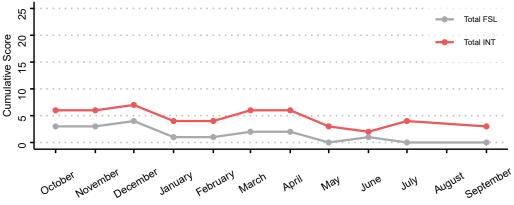
Department

Development

for International

Health: (August data)

High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	6%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	33%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	8%	Low	Assessed settlements where the $\mbox{presence of}$ livestock diseases was reported $\mbox{\sc n}$	39%	Moderate
	17%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽⁷⁾	39%	Moderate
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	17%	Moderate			
Assessed settlements where residents reportedly coped	11%	Moderate	Agriculture		
with a lack of food by $\textbf{only having children eat}^{(\eta)}$			Forecasted annual change in crop production from 5 year average [®]	+14%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	11%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-7%	Low
Change in field bean prices compared to the average	+3%	Low			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Mundri West County

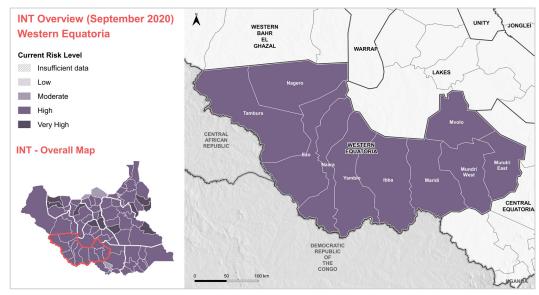
Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	2	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Low Verv High

1.3

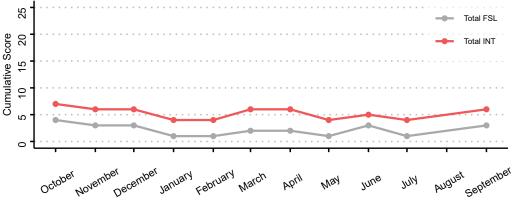
Department

Development

for International

Health: (August data)

High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be $^{\prime\prime}$	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	54%	High
Assessed settlements where the consumption of wild foods that are known to make people sick was	4%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	38%	Moderate
reported ⁽¹⁾	00/		Assessed settlements where selling livestock to cope	62%	High
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽⁷⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children $eat^{(\prime)}$			Forecasted annual change in crop production from 5 year average [®]	-15%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	0%	Low
Change in field bean prices compared to the average	+43%	Very High			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

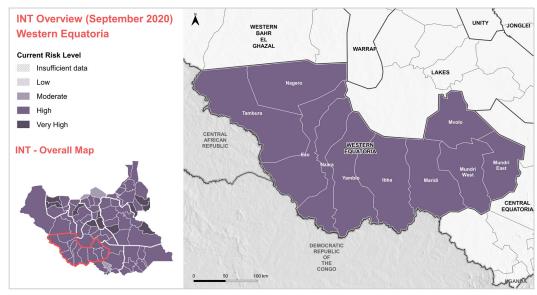
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Mvolo County

Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	Ś	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water	Sanitation	۶.	hvoiene
mator	Janitation	ч.	mygrunu.

Verv High

Low

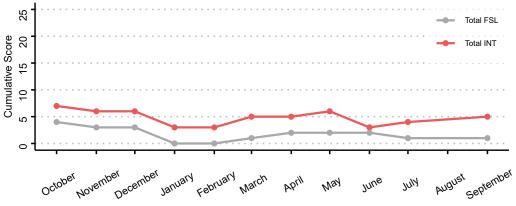
23

Department

Development

for International

Health: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	39%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	8%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	28%	Moderate
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	56%	High
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat $^{\prime\prime}$			Forecasted annual change in crop production from 5 year average [®]	+56%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-1%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

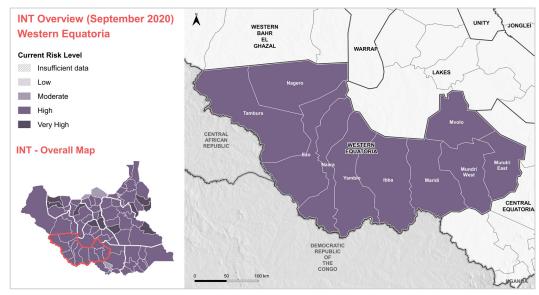
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Nagero County

Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	3	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Verv High

Moderate

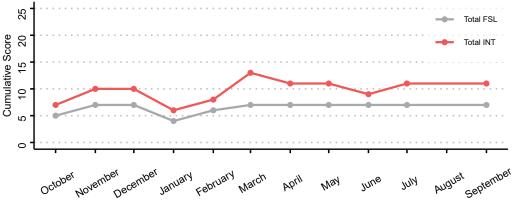
23

Department

Development

for International

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	83%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	25%	High	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	50%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	17%	Low
Assessed settlements where residents reportedly coped	33%	High	Agriculture		
with a lack of food by only having children eat ⁿ	33%	nıgıı	Forecasted annual change in crop production from 5 year average [®]	+6%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	83%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	56%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\!(\!$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+9%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Nyirol County

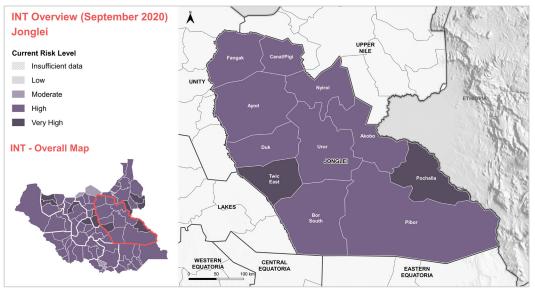
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

🛫 Wator Conitation 9 hygion	
	.
🍋 Water Sanitation & hygiend	

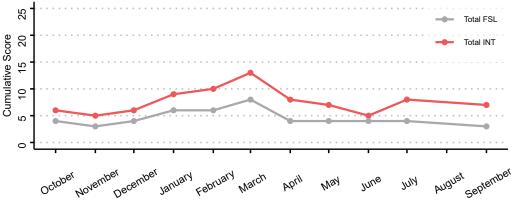
S:	Moderate	
:	Very High	

13

Department

for International

Development


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	8%	Low
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an	75%	Verv High	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽⁷⁾	88%	Very High
unsustainable food source ⁽⁷⁾			Agriculture		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽⁷⁾			Forecasted annual change in crop production from 5 year average ⁽⁹⁾	-16%	High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+9%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

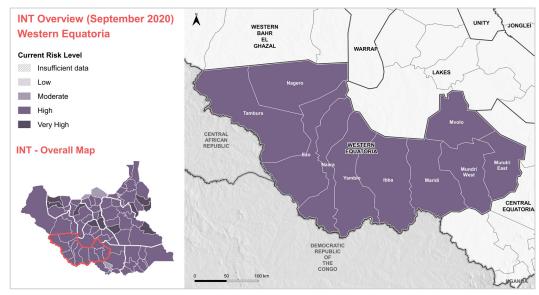
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Nzara County

Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	2	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food Security & Livelihoods:	
------------------------------	--

Water Sanitation & hygiene:

Low Verv High

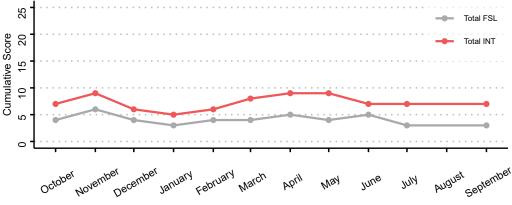
1.3

Department

Development

for International

Health: (August data)


High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	94%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	69%	Very High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was $\mbox{reported}^{\prime\prime}$	56%	High
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽¹⁾			Forecasted annual change in crop production from 5 year average ⁽⁸⁾	+7%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	8%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\!(\!\eta\!)}$	+6%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+16%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime \eta}$	0%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Panyijiar County

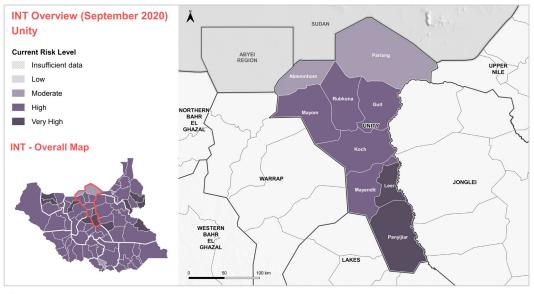
Unity State - South Sudan - September 2020

September 2020 INT Risk:	Very High	Y	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
- Water Sanitation & hygiene:
- Verv High

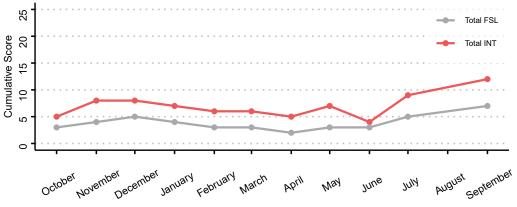
High

1.3

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	38%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock ^m	40%	High
Assessed settlements where the consumption of wild foods that are known to make people sick was	9%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	56%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	49%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽¹⁾	49%	Moderate
Assessed settlements where residents reportedly coped	96%	Very High	Agriculture	. 070/	1
with a lack of food by only having children eat ()			Forecasted annual change in crop production from 5 year average [®]	+37%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	58%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	67%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	-1%	Moderate
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-13%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Panyikang County

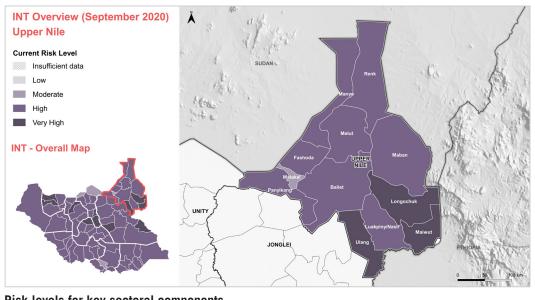
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food Security & Livelihoods:	
------------------------------	--

Water	Sanitation	۶.	hygiene
mator	Janitation		nygiciic

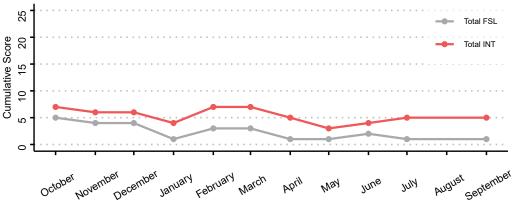
oods:	Low
iene:	Very High

13

Department

for International

Development


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	24%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	2%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	5%	Low
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	Low
Assessed settlements where residents reportedly coped	5%	Low	Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average ⁽⁹⁾	+30%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	17%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+7%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+6%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Pariang County

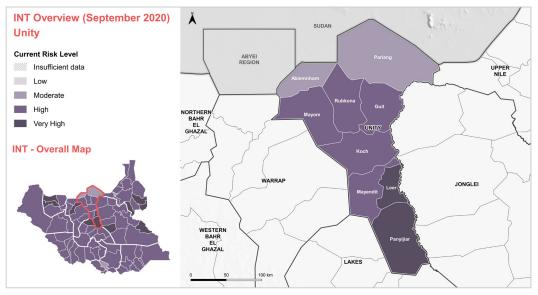
Unity State - South Sudan - September 2020

September 2020 INT Risk:	Moderate	5	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

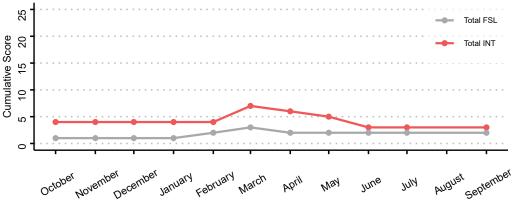
- Water Sanitation & hygiene:
- Moderate
 - Moderate

Department

Development

for International

23


Tealth: (August data) No Data

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	15%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	29%	Moderate
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	90%	Very High
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average®	-21%	Very High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	2%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+5%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-4%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Pibor County

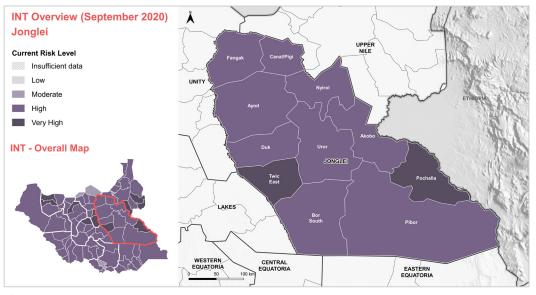
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

-	Water	Sanitation	ጲ	hvoiene.
	value	Samation	x	nygione.

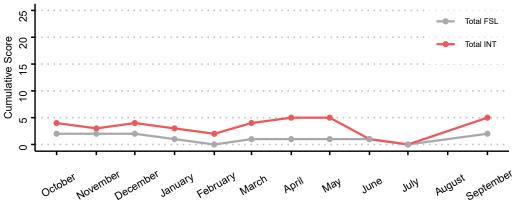
Low Very High

23

Department

for International

Development


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	No Data	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	No Data
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	No Data	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	0%	No Data
reported ⁽ⁿ⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽ⁿ⁾	0%	No Data	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	No Data
Assessed settlements where residents reportedly coped	0%	No Data	Agriculture		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average ⁽⁰⁾	+4%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	No Data	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	0	No Data
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	No Data	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+6%	Low
Change in white sorghum prices ${\rm compared}$ to the average across the previous three ${\rm months}^{m}$	+5%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+42%	Very High
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	+20%	High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Pochalla County

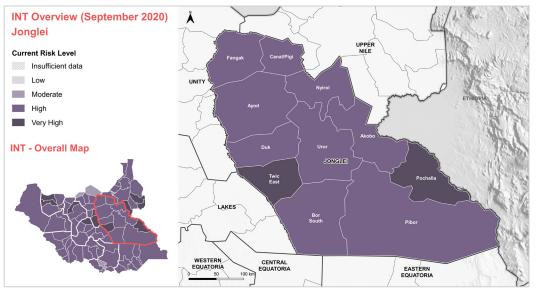
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	Very High	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

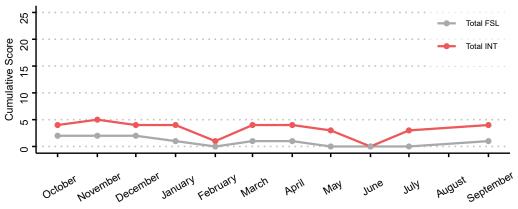
No Data Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ^m	0%	No Data	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	No Data
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	No Data	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	0%	No Data
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	No Data	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	0%	No Data
Assessed settlements where residents reportedly coped	0%	No Data	Agriculture		
with a lack of food by only having children eat ⁽¹⁾			Forecasted annual change in crop production from 5 year average [®]	+13%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime\prime}$	0%	No Data	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\!(\eta)}$	0	No Data
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	No Data	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+28%	High
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

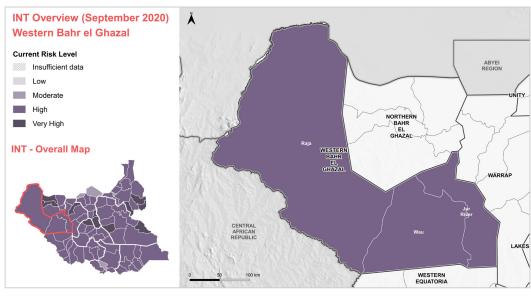
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Raja County

Western Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

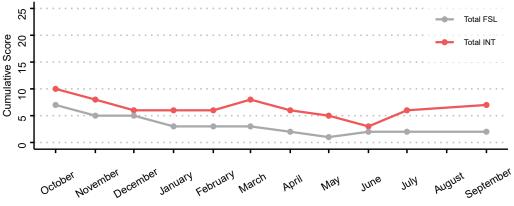
ds:	Moderate
ne:	Very High

13

Department

for International

Development


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	28%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\!\eta\!)}$	94%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	13%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	0%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	6%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat"	076	LUW	Forecasted annual change in crop production from 5 year average [®]	-26%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	6%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	37%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	14%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \prime }$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-1%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Renk County

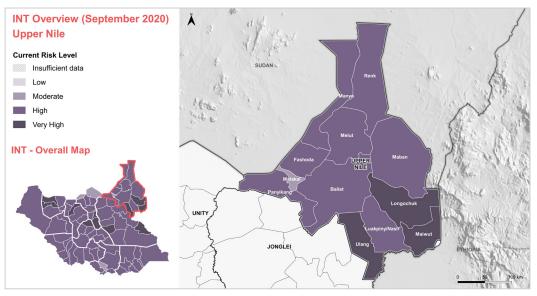
Upper Nile State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	3	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:
---	------	----------	---	--------------

Water Sanitation & hygiene:

Moderate Verv High

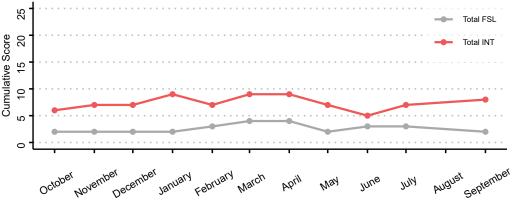
23

Department

Development

for International

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	3%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	3%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	34%	Very High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	6%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	3%	Low
Assessed settlements where residents reportedly use an	19%	Moderate	with a lack of food was reported ⁽¹⁾		
unsustainable food source ⁽¹⁾			Agriculture		
Assessed settlements where residents reportedly coped	0%	Low	U		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average®	-35%	High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ^m	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	20%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	35%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms®	+4%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	-2%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-7%	Low
Change in field bean prices compared to the average across the previous three months $^{\!(\!\!\!n\!\!)}$	+No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Rubkona County

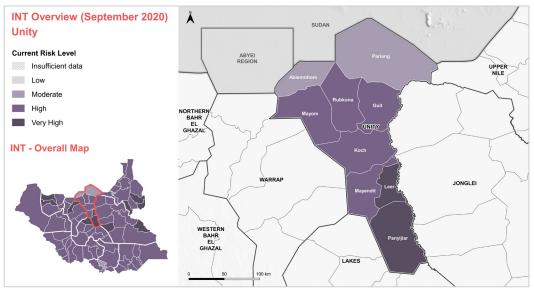
Unity State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

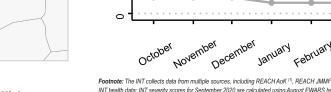
Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

23


Department

Development

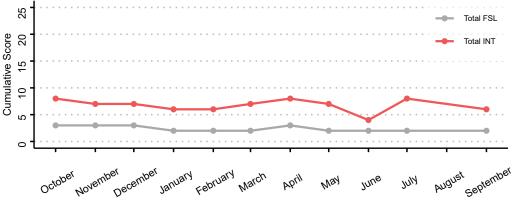
for International

Tealth: (August data)

Verv High

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation.

For more information on this factsheet please contact: REACH south.sudan@reach-initiative.org


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ^m	13%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	68%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	8%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	88%	Very High	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽¹⁾	0,0	2011	Forecasted annual change in crop production from 5 year average®	+52%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without $eating^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	8%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+5%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-19%	Moderate
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Rumbek Centre County

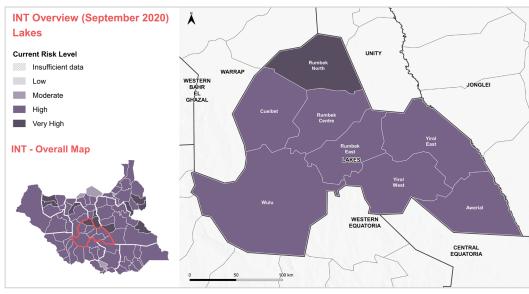
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

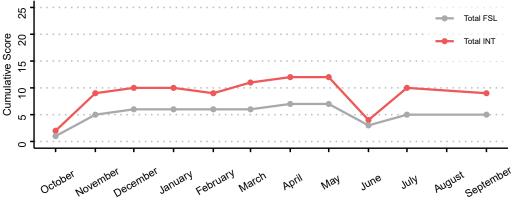
Moderate Verv High

23

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Scor
Assessed settlements where reported hunger was severe or the worst it can be ^m	26%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	44%	High
Assessed settlements where the consumption of wild foods that are known to make people sick was	7%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	48%	High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	4%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	48%	Moderate
Assessed settlements where residents reportedly coped	22%	High	Agriculture		
with a lack of food by only having children $eat^{\prime \eta}$		Ŭ	Forecasted annual change in crop production from 5 year average ^(®)	+6%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	19%	Moderate	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	35%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	4%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+1%	Low
Change in white sorghum prices $compared$ to the average across the previous three $months^{\prime\prime}$	+8%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-8%	Low
Change in field bean prices compared to the average across the previous three months $^{\! (\! n)}$	+16%	High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Rumbek East County

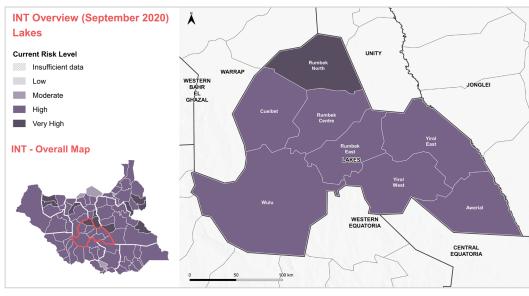
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Ő	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
- Water Sanitation & hygiene:
- Verv High

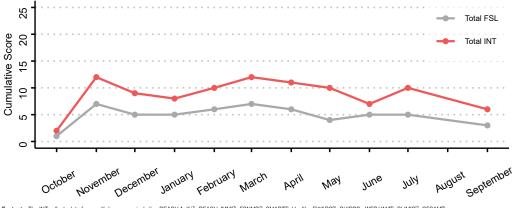
Low

23

Department

Development

for International


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	17%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	31%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	7%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	59%	High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽⁷⁾	59%	High
	21%	High	Agriculture		
Assessed settlements where residents reportedly coped with a lack of food by only having children eat $^{\prime \gamma}$	ZI /o nigii –		Forecasted annual change in crop production from	+25%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	10%	Moderate	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	22%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+1%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	+9%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-9%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime \! \prime \! \prime}$	-1%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Rumbek North County

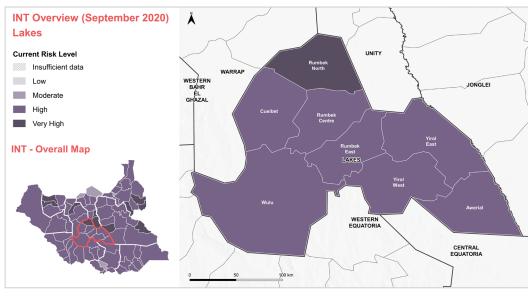
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	Very High	ee ee	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food	Security	&	Livelihoods:	

Water Sanitation & hygiene:

Verv High

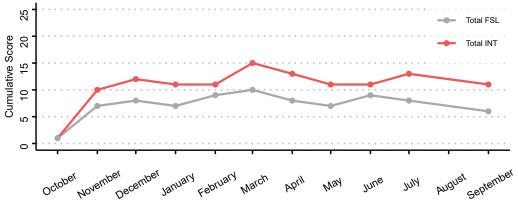
High

23

Department

Development

for International


Tealth: (August data) Verv High

Assessed settlemen

with a lack of food by going days without eating ⁽⁾	land and agric		
Markets			Climate
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	12%	Low	Ratio between average at eac
Change in white sorghum prices compared to the average across the previous three months $^{\! (\! \eta)}$	No Data	No Data	Ratio between average in percent
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	0	Low	

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

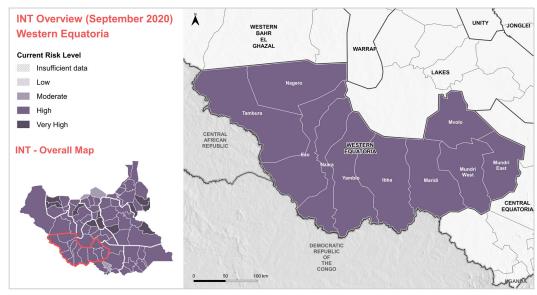
Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	76%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	18%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	15%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	65%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	35%	Moderate
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	18%	Moderate	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	35%	High	Agriculture		
with a lack of food by only having children eat $^{\!(\!\eta\!)}$		-	Forecasted annual change in crop production from 5 year average [®]	-30%	Very High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	29%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	55%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	12%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+4%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ^(®)	-9%	Low
Change in field bean prices compared to the average	0	Low			

Integrated Needs Tracking (INT) County Profile - Tambura County

Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	2	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	2	, C	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water	Sanitation	۶.	hvoiene
mator	Janitation	ч.	mygrone.

Verv High

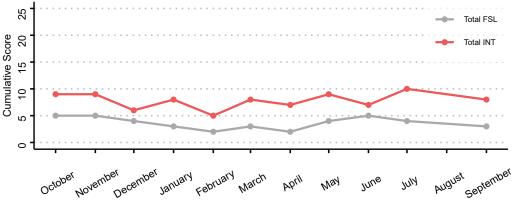
Low

23

Department

Development

for International


Health: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can $\mbox{be}^{\prime \eta}$	6%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	71%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	3%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\!(\eta)}$	65%	Very High
reported ⁽¹⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽¹⁷⁾	6%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	24%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat $^{\prime\prime}$			Forecasted annual change in crop production from 5 year average ⁽⁹⁾	+26%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	6%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽¹⁾	6%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices ${\rm compared}$ to the average across the previous three ${\rm months}^{m}$	+-5%	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+6%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	+20%	High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

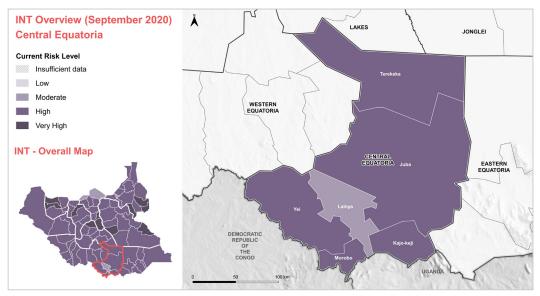
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Terekeka County

Central Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Б.	Water	Sanitation	&	hygiene:

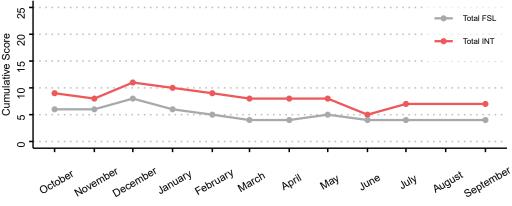
:	Moderate
	Very High

23

Department

Development

for International


🐡 Health: (August data) High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	59%	High	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	36%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was	32%	Very High	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	68%	Very High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	9%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽¹⁾	32%	Moderate
Assessed settlements where residents reportedly coped	14%	Moderate	Agriculture		
with a lack of food by only having children eat $^{\prime\eta}$			Forecasted annual change in crop production from 5 year average ⁽⁹⁾	+28%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	53%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	+0.06	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+4%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	+6%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

7

Integrated Needs Tracking (INT) County Profile - Tonj East County

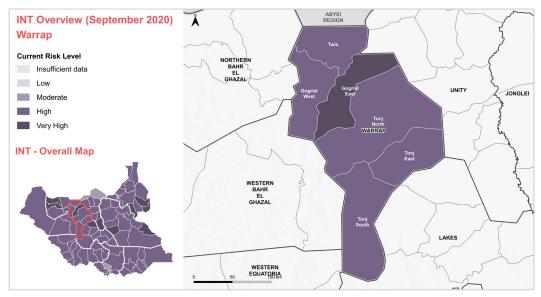
Warrap State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	9	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

_		· · · · ·	~	
ĥ.	Water	Sanitation	&	hygiene

Moderate Verv High e:

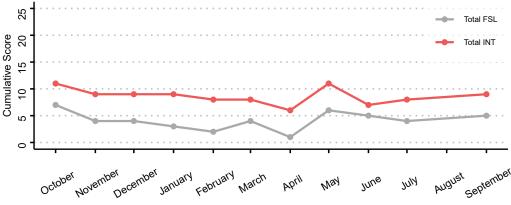
23

Department

Development

for International

Tealth: (August data) Verv High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽⁷⁾	36%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	57%	Very High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	93%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	36%	Moderate
Assessed settlements where residents reportedly use an unsustainable food source	21%	Moderate	with a lack of food was reported ⁽⁷⁾		
Assessed settlements where residents reportedly coped	36%	High	Agriculture		
with a lack of food by only having children eat^{η}			Forecasted annual change in crop production from 5 year average [®]	-9%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	64%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	26%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	21%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms [®]	+5%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-5%	Low
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

2

Integrated Needs Tracking (INT) County Profile - Tonj North County

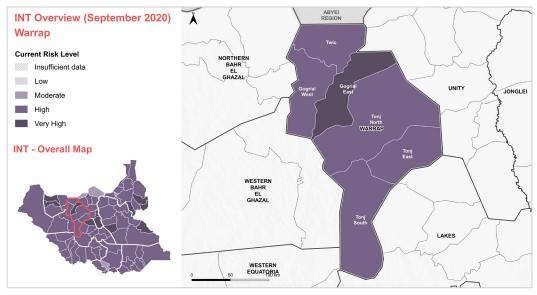
Warrap State - South Sudan - September 2020

September 2020 INT Risk:	High	Y	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	5	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food Security & Livelihoods:	
------------------------------	--

- Water Sanitation & hygiene:
- Low Verv High

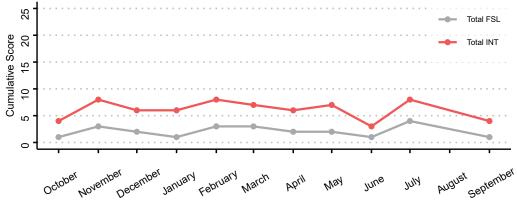
23

Department

Development

for International

🐡 Health: (August data)


High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	14%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\prime\prime\prime}$	6%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	19%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	56%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	3%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported ^m	22%	Low
Assessed settlements where residents reportedly coped	19%	Moderate	Agriculture		
with a lack of food by $\textbf{only having children eat}^{\prime\eta}$			Forecasted annual change in crop production from 5 year average®	-3%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	11%	Moderate	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	2%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	3%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	-0.07	Low	Ratio between rainfall for the current year and the average in percentage terms ⁽⁰⁾	-6%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Tonj South County

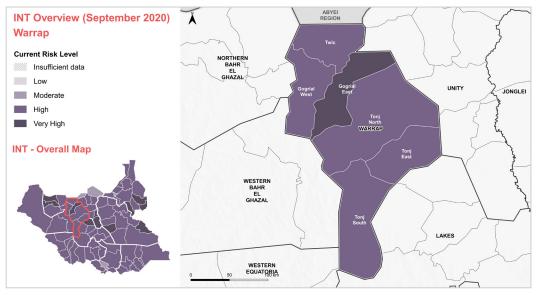
Warrap State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food Security & Livelihood	s:
----------------------------	----

- Water Sanitation & hygiene:
- Low Verv High

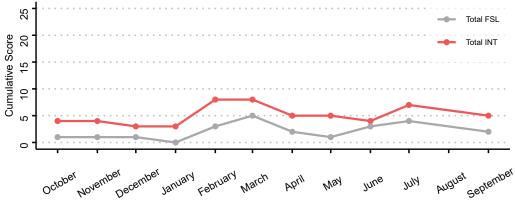
23

Department

Development

for International

🐡 Health: (August data)


High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	27%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\eta)}$	20%	Moderate
Assessed settlements where the consumption of wild foods that are known to make people sick was		High	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	47%	High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	7%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	7%	Low
Assessed settlements where residents reportedly coped	7%	Low	Agriculture		
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average [®]	+29%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	7%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	9%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime\eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \! 7}$	+15%	Moderate	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+5%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	+5%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Torit County

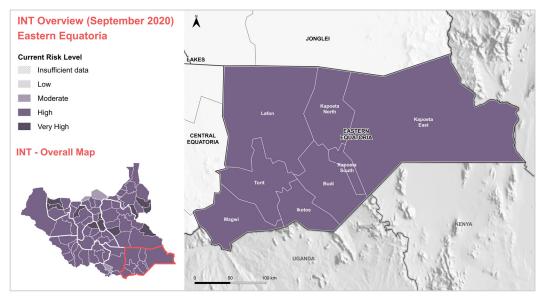
Eastern Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	N.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	2	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Moderate

Verv High

13

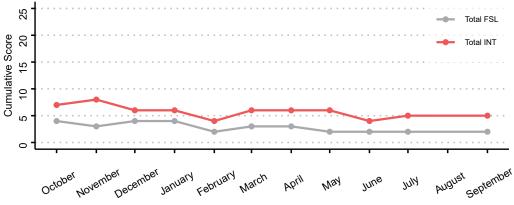
Department

for International

Development

Risk levels for key sectoral components

Q	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--


-	Mator	Conitation	0	hugiono.	
	water	Sanitation	ĸ	ilygiene:	

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	27%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\prime\prime\prime}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	13%	Moderate	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	20%	Moderate
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	7%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	13%	Low
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽¹⁾	0,0	2011	Forecasted annual change in crop production from 5 year average ^(®)	+5%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	40%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽¹⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+4%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	+97%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁹⁾	+9%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	+11%	Moderate			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

-

For more information on this factsheet please contact: REACH south.sudan@reach-initiative.org

High

Integrated Needs Tracking (INT) County Profile - Twic County

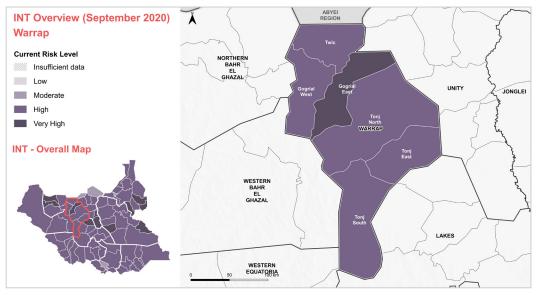
Warrap State - South Sudan - September 2020

September 2020 INT Risk:	High	9	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

🗩 F	ood	Security	&	Livelihoods:	
-----	-----	----------	---	--------------	--

- Water Sanitation & hygiene:
- High Verv High

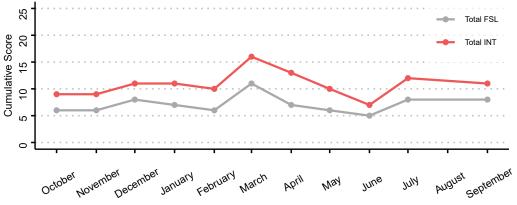
23

Department

Development

for International

Tealth: (August data)


High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	64%	Very High	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	61%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was			Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	69%	Very High
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	25%	Moderate	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	36%	Moderate
Assessed settlements where residents reportedly coped	14%	Moderate	Agriculture		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average [®]	0%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	31%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	48%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	22%	Moderate	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+5%	Low
Change in white sorghum prices compared to the average across the previous three months $^{(\!$	+17%	High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-16%	Moderate
Change in field bean prices compared to the average across the previous three months $^{\prime\prime}$	+26%	Very High			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Twic East County

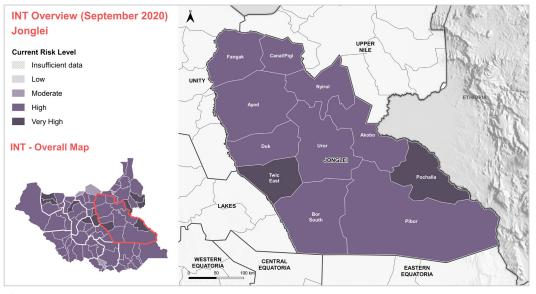
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	Very High	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

3

3


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

🗩 F	ood	Security	&	Livelihoods:	
-----	-----	----------	---	--------------	--

- Water Sanitation & hygiene:
- Verv High

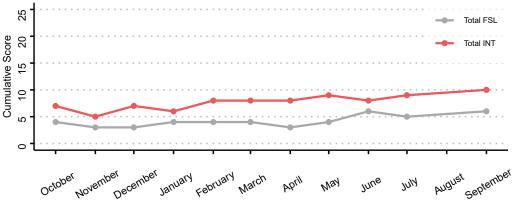
High

13

Department

Development

for International


Tealth: (August data) Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	14%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	79%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	4%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	14%	Low
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an	43%	High	Assessed settlements where selling livestock to cope with a lack of food was reported ⁽⁷⁾	29%	Low
unsustainable food source ⁽⁷⁾			Agriculture		
Assessed settlements where residents reportedly coped	50%	Very High	Agriculture		
with a lack of food by only having children eat $^{(i)}$			Forecasted annual change in crop production from 5 year average [®]	-8%	Very High
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	50%	Very High	Assessed settlements where inadequate access to land and agricultural inputs was reported ^m	98%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	0%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Ulang County

Upper Nile State - South Sudan - September 2020

Total FSL

Total INT

Septemb

September 2020 INT Risk:	Very High	S.	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High		IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

Δ

Δ

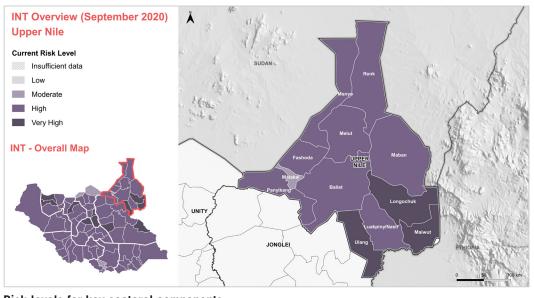
25

5

Score 20

across the previous three months(7)

Trend analysis graph


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

Food Security & Livelihoods	:
-----------------------------	---

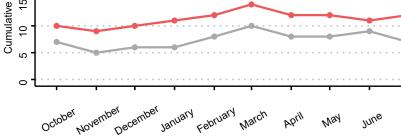
		· · · · ·	~		
Ξ.	water	Sanitation	č,	nygien	e

giene:	Very	High

High

13

Department


Development

for International

Health: (August data)

Verv High

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

For more information on this factsheet please contact: REACH south.sudan@reach-initiative.org

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	35%	Moderate	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	42%	Very High	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	54%	High
reported ⁽¹⁾ Assessed settlements where residents reportedly use an	65%	Very High	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\!(\prime)}$	100%	Very High
unsustainable food source ^m Assessed settlements where residents reportedly coped with a lack of food by only having children eat ^m	50%	Very High	Agriculture Forecasted annual change in crop production from	+10%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ¹⁰	0%	Low	5 year average [®] Assessed settlements where inadequate access to land and agricultural inputs was reported [®]	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime\eta}$	54%	High	Ratio between NDVI for the current year and average at each time step in percentage terms®	+0%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \gamma}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+7%	Low
Change in field bean prices compared to the average	No Data	No Data			

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Integrated Needs Tracking (INT) County Profile - Uror County

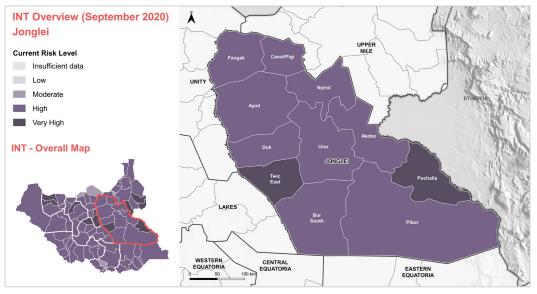
Jonglei State - South Sudan - September 2020

September 2020 INT Risk:	High	5	IPC FSL May - July 2020 Projection:	4	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	Very High	3	IPC January 2020 FSL:	4	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

4

Δ


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

ods:	Moderate
ene:	Very High

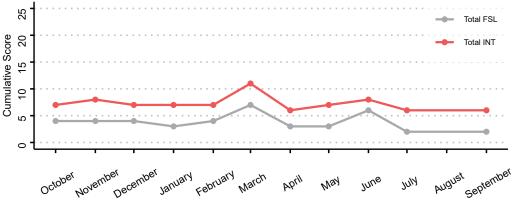
13

Department

Development

for International

Tealth: (August data)



Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\!\eta\!)}$	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\left(\eta \right) }$	31%	Moderate
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	83%	Very High
Assessed settlements where residents reportedly use an	93%	Very High	with a lack of food was reported ⁽¹⁾		
unsustainable food source ⁽⁷⁾			Agriculture		
Assessed settlements where residents reportedly coped	0%	Low	•		
with a lack of food by only having children eat $^{\prime \eta}$			Forecasted annual change in crop production from 5 year average ^(®)	+3%	Moderate
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	0%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+6%	Low
Change in white sorghum prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+10%	Low
Change in field bean prices compared to the average across the previous three months ⁽⁷⁾	No Data	No Data			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

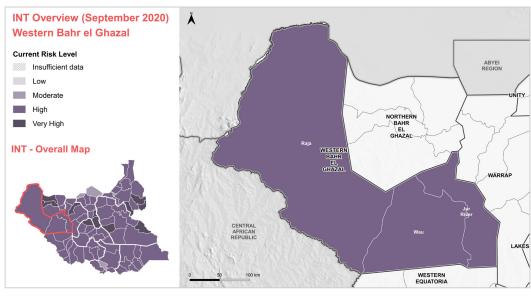
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Wau County

Western Bahr el Ghazal State - South Sudan - September 2020

September 2020 INT Risk:	High	IPC FSL May - July 2020 Projection:	3	C	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

ds:	Moderate	
e:	Very High	

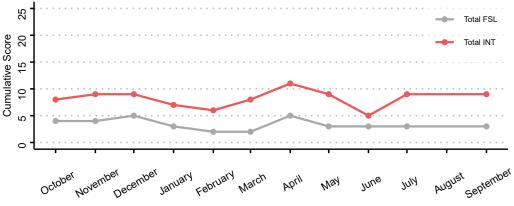
13

Department

Development

for International

Tealth: (August data)


Verv High

Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	2%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	72%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	5%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽¹⁾	0%	Low
reported ⁽⁷⁾ Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	2%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\prime\prime}$	2%	Low
Assessed settlements where residents reportedly coped	6%	Low	Agriculture		
with a lack of food by only having children eat	0,0		Forecasted annual change in crop production from 5 year average ⁽⁶⁾	-2%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\prime\prime}$	2%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime \eta}$	30%	High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms®	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\!(\!\eta\!)}$	+34%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-2%	Low
Change in field bean prices compared to the average across the previous three months $^{\prime \eta}$	0%	Low			

Trend analysis graph

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

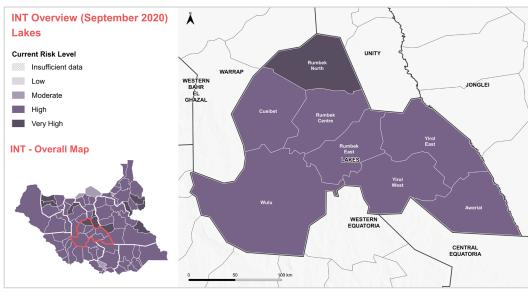
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Wulu County

Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	IPC January 2020 FSL:	2	Ċ	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

- Food Security & Livelihoods:
- Water Sanitation & hygiene:
- Verv High

Low

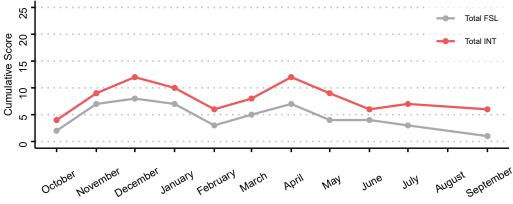
23

Department

Development

for International

Health: (August data) Verv High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽ⁱ⁾	18%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	9%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\mbox{\tiny (II)}}$	0%	Low
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	0%	Low
Assessed settlements where residents reportedly use an unsustainable food source	0%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	18%	Moderate	Agriculture		
with a lack of food by only having children eat^{η}			Forecasted annual change in crop production from 5 year average ^(®)	+36%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	9%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	15%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\prime \eta}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+2%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+2%	Low
Change in field bean prices compared to the average	No Data	No Data			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated

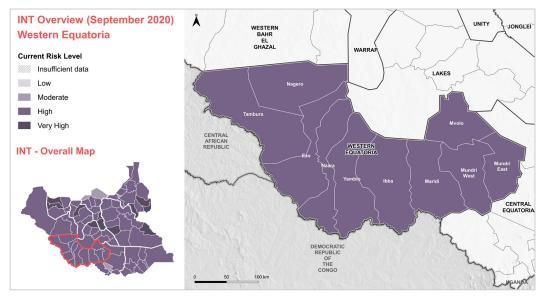
Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Yambio County

Western Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High		IPC FSL May - July 2020 Projection:	2	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	9	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

	Food	Security	&	Livelihoods:	
--	------	----------	---	--------------	--

Water	Sanitation	۶.	hvoiene
mator	Janitation	ч.	mygrone.

Verv High

Low

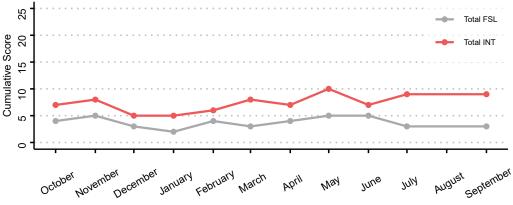
23

Department

Development

for International

- Health: (August data)
 - Verv High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be $^{\prime\prime}$	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	91%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	0%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\!(\!\eta\!)}$	50%	High
reported ^m Assessed settlements where residents reportedly use an unsustainable food source ^m	3%	Low	Assessed settlements where selling livestock to cope with a lack of food was reported $^{\!(\prime)}$	21%	Low
Assessed settlements where residents reportedly coped	3%	Low	Agriculture	+16%	Low
with a lack of food by only having children eat			Forecasted annual change in crop production from 5 year average [®]	+10%	LUW
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	6%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽⁷⁾	24%	Moderate
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁸⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+21%	High
Change in field bean prices compared to the average	+14%	Moderate			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI⁽²⁾, FSNMS⁽³⁾, SMART⁽⁴⁾, Health - EWARS⁽⁵⁾, CHIRPS - WFP VAM⁽⁶⁾, CLIMIS⁽⁷⁾, CFSAM⁽⁶⁾ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Yei County

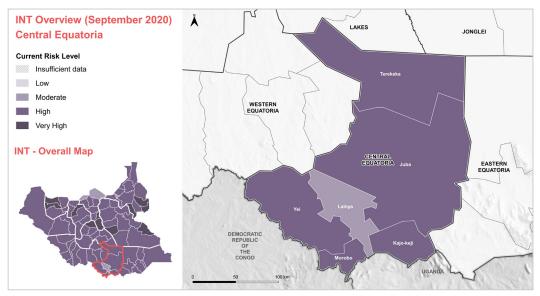
Central Equatoria State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:	
January 2020 INT Risk:	High	٩	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:	

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Verv High

Department

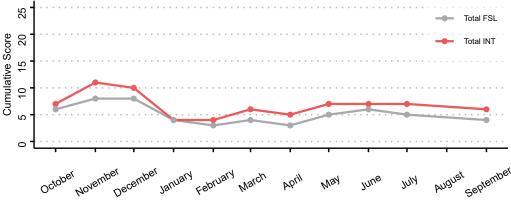
for International

Development

23

Moderate

🐡 Health: (August data) High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽ⁱ⁾	0%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock $^{\!(\prime)}$	100%	Very High
Assessed settlements where the consumption of wild foods that are known to make people sick was	40%	Very High	Assessed settlements where the $\mbox{presence of}$ livestock diseases was reported $\mbox{\sc n}$	87%	Very High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	0%	Low
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽¹⁾		
			Agriculture		
Assessed settlements where residents reportedly coped with a lack of food by only having children eat ⁿ	33%	High	Forecasted annual change in crop production from	-51%	Low
with a lack of 1000 by only having children eat			5 year average®	-31%	LOW
Assessed settlements where residents reportedly coped with a lack of food by going days without $eating^{\prime\prime}$	0%	Low	Assessed settlements where inadequate access to land and agricultural inputs was reported ⁽¹⁾	11%	Low
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market $^{\!(\eta)}$	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+3%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime 7}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	+7%	Low
Change in field bean prices compared to the average	+8%	Low			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁹, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Yirol East County

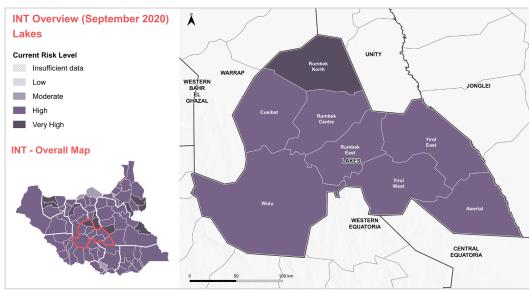
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	3	IPC FSL May - July 2020 Projection:	4	Ç	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High		IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

23

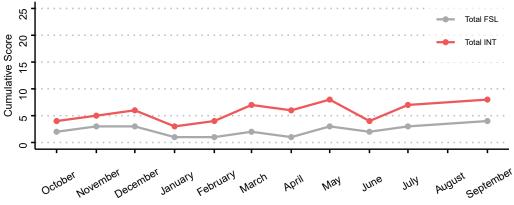
Department

Development

for International

Tealth: (August data)

Verv High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be $^{\prime\prime}$	5%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	8%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	6%	Low	Assessed settlements where the presence of livestock diseases was reported ⁽⁷⁾	40%	High
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	43%	Moderate
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	8%	Low	with a lack of food was reported ⁽¹⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat ⁽¹⁾	0,0	2011	Forecasted annual change in crop production from 5 year average®	+12%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating ⁽⁷⁾	20%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{(\eta)}$	47%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+1%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime\prime}$	No Data	No Data	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-1%	Low
Change in field bean prices compared to the average	+43%	Very High			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

Integrated Needs Tracking (INT) County Profile - Yirol West County

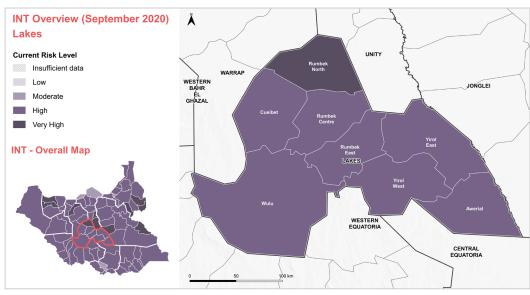
Lakes State - South Sudan - September 2020

September 2020 INT Risk:	High	S.	IPC FSL May - July 2020 Projection:	3	Q	IPC Nutrition May - July 2020 Projection:
January 2020 INT Risk:	High	3	IPC January 2020 FSL:	3	Q	IPC January 2020 Nutrition:

Source: IPC - Integrated Food Security Phase Classification

2

2


Introduction

The Integrated Needs Tracking (INT) system aims at providing an overview of emerging and ongoing intersectoral needs at county level in South Sudan, in order to facilitate evidence-based decision-making. To do so, it draws from multiple up-to-date sources of data from the four emergency sectors: Food Security & Livelihoods (FSL), Water, Sanitation and Hygiene (WASH), Health, and Nutrition.

This data is then fed into an analytical framework that reflects the current risk level of intersectoral or sectoral emergency needs in each county. Each of the indicators has pre-determined thresholds that can classify the county risk level as 'Low', 'Moderate', 'High', or 'Very High'. This allows humanitarian actors to compare the relative needs between counties and how these change over time to aid response prioritisation. The more indicators converge on 'High' or 'Very High' in a county, the more likely it is that emergency needs are at their greatest severity in that county. Therefore, the findings presented in this factsheet should be considered indicative of the broad overall and FSL needs in the respective county in September 2020, and are not statistically generalisable.

The outcomes are then presented to key coordination bodies such as the Needs Analysis Working Group (NAWG), the Inter Cluster Coordination Group (ICCG), and the Integrated Food Security Phase Classification (IPC) initiative for contextualisation and to support humanitarian decision-making and prioritisation.

A comprehensive overview of the INT methodology, including indicator metadata and thresholds, is located on the INT website.

Risk levels for key sectoral components

0	Food	Security	&	Livelihoods:	
---	------	----------	---	--------------	--

Water Sanitation & hygiene:

Moderate Verv High

23

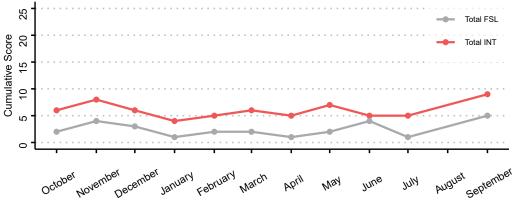
Department

Development

for International

Tealth: (August data)

Verv High


Food Security & Livelihoods (FSL) indicators

Food Availability & Access		Severity Score	Livestock		Severity Score
Assessed settlements where reported hunger was severe or the worst it can be ⁽¹⁾	3%	Low	Assessed settlements where residents reportedly do not possess or have access to livestock ⁽⁷⁾	0%	Low
Assessed settlements where the consumption of wild foods that are known to make people sick was	4%	Low	Assessed settlements where the presence of livestock diseases was reported $^{\mbox{\tiny (7)}}$	33%	Moderate
reported ⁽¹⁾			Assessed settlements where selling livestock to cope	55%	High
Assessed settlements where residents reportedly use an unsustainable food source ⁽⁷⁾	0%	Low	with a lack of food was reported ⁽⁷⁾		
Assessed settlements where residents reportedly coped	0%	Low	Agriculture		
with a lack of food by only having children eat $^{\!(\eta)}$			Forecasted annual change in crop production from 5 year average ⁽⁹⁾	+47%	Low
Assessed settlements where residents reportedly coped with a lack of food by going days without eating $^{\!(\prime)}$	28%	High	Assessed settlements where inadequate access to land and agricultural inputs was reported $^{\prime\eta}$	43%	Very High
Markets			Climate		
Assessed settlements where residents reportedly have no physical access to a functional market ⁽⁷⁾	0%	Low	Ratio between NDVI for the current year and average at each time step in percentage terms ⁽⁶⁾	+1%	Low
Change in white sorghum prices compared to the average across the previous three months $^{\prime \eta}$	+62%	Very High	Ratio between rainfall for the current year and the average in percentage terms ⁽⁶⁾	-2%	Low
Change in field bean prices compared to the average	+45%	Very High			

Trend analysis graph

across the previous three months(7)

The graph below shows the aggregate number of indicators at high and very high thresholds which are included in the INT for each of the past 12 months. Based on the convergence of evidence, the higher the total number of indicators scoring high or very high, the greater the risk of emergency needs in a given county - the maximum cumulative count of FSL and INT indicators being 17, and 26, respectively. Due to a lack of available data for August 2020, no severity scores were calculated.

Footnote: The INT collects data from multiple sources, including REACH AoK (1), REACH JMMI², FSNMS³, SMART¹⁴, Health - EWARS¹⁵, CHIRPS - WFP VAM⁶, CLIMIS⁷, CFSAM⁶ INT health data: INT severity scores for September 2020 are calculated using August EWARS health data as proxy due to the unavailability of September EWARS data at the time of publication. INT nutrition data: INT severity scores for August and September 2020 do not include nutrition figures due to a lack of available GAM data and no IPC projection scores NDVI: Normalised Difference Vegetation Index (NDVI) is the measure of green vegetation surface reflectancy derived from remote-sensing. A positive score equates to high levels of vegetation. Data collection periods: REACH AoK, CHIRPS -WFP VAM, JMMI, CLIMIS - All collected September 2020 with one-month recall period, EWARS data collected August 2020 with one month recall period, CFSAM collected January 2020 with one-year recall period. For further information please visit the INT website.

